|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Изотопные методы | Изотопные методы (далее И) в геологии, методы изучения геол. процессов, основанные на исследовании содержания и соотношений радиоактивных, радиогенных и стабильных изотопов отдельных элементов в горных породах, минералах, природных водах, газах и органич. веществе.
Наиболее разработаны и широко применимы методы абсолютной геохронологии (см. Геохронология), с их помощью, по соотношению радиоактивных изотопов и дочерних продуктов их распада, например 235 - 207; 238 - 206; 232 - 208; 87 - 87; 40 - 40 и др., определяется абс. возраст горных пород и минералов. Методами абс. геохронологии определен возраст пород Земли, Луны, метеоритов; по изотопному составу инертных газов (, и мн. др.) судят о радиационном возрасте метеоритов (времени воздействия на них космич. облучения), Изотопный состав инертных газов Земли и метеоритов несет богатую информацию об особенностях образования вещества Солнечной системы (см. Космохимия). Содержание 14(T1/2 = 5600 лет) в ископаемых остатках на Земле позволяет определять время их захоронения; с помощью 14 определен возраст многих археол. находок. Различное содержание 14 в годовых кольцах древесины деревьев может указывать на неодинаковую интенсивность образования его в атмосфере прошлых геол. периодов, связанную с периодами изменения интенсивности космич. облучения планеты. По парам 230Io - 232: 230Io - 231, а также по абс. содержанию радиоактивных 14 и 10Bc в донных отложениях океанов и морей определяются скорость и время накопления различных донных морских осадков; средняя продолжительность накопления неконсолидированных осадков в океане достигает 150×106 лет.
Важную роль в геол. исследованиях играет вариация в содержании стабильных изотопов. Несмотря на небольшое различие в физ. и хим. свойствах изотопов при некоторых геол. процессах происходит фракционирование (разделение) изотопов отдельных хим. элементов. Наибольший эффект фракционирования характерен для легких элементов - Н, С, , О, и др., т. к. для них относительная разница в массах изотопов наибольшая. Различия в свойствах изотопов тяжелых элементов малы и на совр. уровне измерительной техники трудно определяются. Измерения ведутся на масс-спектрометре по отношению к эталонам, изотопный состав которых принимается всеми лабораториями мира. Результаты измерений выражаются в величинах d, показывающих, на сколько % или o/oo содержание тяжелого изотопа в образце больше (+d) или меньше ( - d), чем в эталоне. Одним из наиболее распространенных процессов фракционирования стабильных изотопов является изотопный обмен. Глубина разделения изотопов определяется кинетическими и термодинамич. факторами. При высокой температуре фракционирование минимально, при низкой - максимально. При обычной температуре наиболее восстановленные соединения С, , содержат больше легкого изотопа; высокоокисленные их соединения содержат больше тяжелого изотопа, например: 4 | 2 | 3 |
|
| утяжеление , , |
|
| < | | 2 |
|
|
|
|
| 2 | < |
|
|
|
| 2 | 3 | 2 |
|
|
|
|
| 42- | 3- | ¯ | ¯ |
Изучение вариаций состава стабильных изотопов позволяет решать одну из важнейших задач геохимии - восстановление истории путей их миграции в течение геол. процессов. Так, выделение 4 и 3, а также других изотопов нейтральных газов при вулканич. извержениях, особенно в областях срединно-океанич. хребтов, позволяет изучать глубинные процессы, идущие в мантии Земли. Испарение водных масс с поверхности океанов и морей сопровождается разделением изотопов. В водяном паре изотопный состав (1/2) и (16/18) легче, чем в морской воде. Пары воды содержат преим. 12, а более тяжелая молекула воды (22) обогащает океанич. воду. При конденсации паров воды снова происходит разделение изотопов, и первые капли дождя содержат более "тяжелую" воду, чем последующие. Наиболее "легкая" вода в виде снега и льда в полярных областях, например в Антарктике, где содержание 2 в различных слоях снега и льда зависит от того, в каком сезоне года они накапливались. Пресные воды легче морских, и их изотопный состав иногда имеет сезонные колебания. При изотопном обмене между разными компонентами устанавливается равновесие реакции, например: . Так, образование карбонатов в условиях термодинамич. равновесия с раствором сопровождается смещением изотопного состава Величина этого смещения зависит от температуры. Например, наибольшее обогащение карбоната (3) изотопом 16 происходит при осаждении 3 в холодной воде. Зависимость фракционирования изотопов от температуры, при которой протекает реакция, была положена в основу палеотермометрического метода; так, изучение изотопного состава известковых скелетов ископаемых морских организмов позволяет определять температуры древних морей. Метод настолько чувствителен, что по кольцам роста раковин устанавливаются сезонные колебания температуры древних морей.
Немалую роль в изучении геол. процессов играют изотопы серы. Изотопный состав серы в горных породах и минералах Земли подвержен значит, колебаниям. За стандарт изотопного состава серы принимается сера метеоритов. Обычно измеряются вариации в отношениях наиболее распространенных изотопов 32/34. Осн. процесс изотопного фракционирования серы связан с перераспределением изотопов между окисленными (сульфатами) и восстановленными (сульфидами) соединениями серы. Изотопное фракционирование в геол. процессах могло начаться только после появления окисленных соединений серы, т. е. после появления на Земле свободного Поэтому, изучая изотопный состав серы древних отложений, можно определить время формирования атмосферы Земли. Важным механизмом разделения изотопов серы является восстановление сульфатов. В условиях низких температур восстановление обычно идет с помощью сульфатредуцирующих бактерий. Образующийся сероводород обогащается легким изотопом серы, а оставшийся сульфат утяжеляется. Вся сера сульфидных соединений прошла стадию биогенного окисления, в результате чего изотопный состав серы, например, океанич. сульфатов утяжелен на неск. % по сравнению с серой метеоритов. Эта величина служит важной планетарной константой. Изотопный состав серы месторождений сульфидов цветных тяжелых металлов позволяет восстанавливать историю серы до момента их фиксации в рудах и решать вопрос об источнике рудного вещества. В частности, выясняется большая роль в рудообразовании серы, которая прошла стадию редукции сульфатов. Установлено, что в магматич. процессы часто вовлекается вещество осадочных пород.
По изотопным отношениям 12/13 выделяются два вида соединений. Одним свойственно повышенное содержание тяжелого (d 13~О + ), например осадочных карбонатных отложений; другим - легкого (d 13 ~ -20, -40о/оо), например нефти, горючих газов, совр. организмов и т. п. При образовании алмазов, карбонатитов в мантии Земли происходит фракционирование изотопного состава Изотопный состав алмазов и карбонатитов отличается от например, карбонатов и одинаков в разных точках земного шара. Изучение изотопного состава позволяет ближе подойти к решению вопроса о происхождении нефти, газа, алмазов, углеводородных соединений в магматич. породах, графита в древних метаморфич. толщах.
Методы изотопных исследований - новая развивающаяся область геологии. В последние годы обнаружены колебания в изотопном составе В, , , и некоторых др. элементов. Изучение геол. значения этих колебаний - задача будущего.
А. П. Виноградов. |
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 21.11.2024 11:58:46
|
|
|
|
|
|
|
|
|
|