Большая Советская Энциклопедия (цитаты)

Ядерная электроника

Ядерная электроника (далее Я) совокупность методов ядерной физики, в которых используются электронные приборы для получения, преобразования и обработки информации, поступающей от детекторов ядерных излучений. Эти методы применяются помимо ядерной физики и физики элементарных частиц всюду, где приходится иметь дело с ионизирующими излучениями ( медицина, космические исследования и т. д.). Малая длительность процессов и, как правило, высокая их частота, а также наличие фона требуют от приборов Я высокого временного разрешения (~ 10-9 сек). Необходимость одновременного измерения большого числа параметров (амплитуды сигнала, времени его прихода, координаты точки его детектирования и др.) привела к тому, что именно в Я впервые были разработаны схемы аналого-цифрового преобразования, применены цифровые методы накопления информации, многоканальный и многомерный анализ и использованы ЭВМ (см. Электронная вычислительная машина).

  При регистрации частиц (или квантов) задача Я сводится к счету импульсов от при идентификации типа излучения или при исследовании его спектра анализируется форма импульса, его амплитуда или относительная задержка между импульсами. В случае исследования пространств, распределения излучения регистрируются номера "сработавших" или непосредственно определяется координата точки детектирования.

  Главными элементами устройств Я являются: совпадений схемы, антисовпадений схемы, амплитудные дискриминаторы, линейные схемы пропускания и сумматоры, многоканальные временные и амплитудные анализаторы, различные устройства для съема информации с координатных (искровых камер и пропорциональных камер) и т. д. Полный перечень насчитывает сотни наименований.

  Устройство для регистрации частиц содержит усилитель, преобразователь сигнала и регистрирующее устройство. Преобразователь переводит сигнал в стандартный импульс или преобразует амплитуду или время прихода сигнала в цифровой код. Для регистрации результатов измерения применяются счетчики импульсов, запоминающие устройства или ЭВМ, реже самопишущие приборы или фотоаппаратура.

  На рис. 1 изображена упрощенная система для исследования спектров излучения. Заряженная частица пересекает Д1, Д2, Д3 и останавливается в Д4. Сигналы с Д1, Д2, Д3 через формирователи Ф1, Ф2, Ф3 поступают на схему совпадений СС, которая отбирает события, при которых сигналы на ее входы приходят одновременно. Одновременность прихода импульсов обеспечивается согласующимися линиями задержки ЛЗ. Схема совпадения вырабатывает сигнал, который "разрешает" преобразование исследуемого импульса от Д4. Результат преобразования из аналого-цифрового преобразователя АЦП в виде цифрового кода заносится в оперативное запоминающее устройство или ЭВМ. Измеренный амплитудный спектр выводится на экран электроннолучевой трубки ЭЛТ. Эта часть системы, ограниченная пунктиром, представляет собой многоканальный амплитудный анализатор. Скорость счета на выходе схемы совпадений, фиксируемая счетчиком СЧ, показывает число зарегистрированных событий. Временной отбор сигналов осуществляется схемами совпадений, которые срабатывают от импульсов с определенной длительностью и амплитудой. Схемы совпадения реализуют логическую функцию "И" (логическое умножение), т. е. на ее выходе сигнал появляется лишь тогда, когда импульсы на всех входах имеют определенный уровень, называются "единичным". Если на один из входов схемы совпадения подать сигнал с инвертированной полярностью, она превращается в схему антисовпадений. В современных схемах совпадений и антисовпадений используются стандартные интегральные схемы (рис. 2).

  Амплитудный отбор осуществляется дискриминаторами, которые выполняются по схеме триггера Шмидта или на туннельных диодах (ТД) и формируют стандартный выходной импульс лишь в случае, если напряжение (или ток) на входе превысит заданный порог. Для амплитудной дискриминации часто используются схемы сравнения (компараторы). Эволюция схем совпадений и амплитудных дискриминаторов типична и для др. приборов Я Вместо блоков, реализующих одну логическую функцию ("И", "ИЛИ" и т. д.), разрабатываются универсальные многофункциональные устройства, логическую функцию которых можно задавать извне. Этому способствовало внедрение ЭВМ в Я Вычислительная техника позволила создать автоматизированную аппаратуру с программно регулируемыми параметрами: ЭВМ управляет порогами срабатывания схем, временным разрешением, задержкой сигналов, логикой отбора событий, режимом работы измерительные системы и т. д. Внедряются в практику физического эксперимента также микропроцессоры и специализированные процессоры для распознавания образов, для накопления и предварит, обработки результатов измерений (рис. 3). Накопление экспериментальных данных происходит в ЭВМ с последующей переписью на ленту. Результаты предварительной обработки выводятся на экран электроннолучевой трубки, что позволяет оператору вмешиваться в ход измерений. ЭВМ управляет различными исполнительными устройствами: моторами, перемещающими или мишени, реле, коммутаторами сигналов и т. д.

  Лит.: Ковальский Е., Я, пер. с англ., М., 1972; Электронные методы ядерной физики, М., 1973; Колпаков И. Ф., Электронная аппаратура на линии с ЭВМ в физическом эксперименте, М., 1974; Современная ядерная электроника, т. 1-2, М., 1974.

  Ю. А. Семенов.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 21.11.2024 12:11:49