Большая Советская Энциклопедия.

Большая Советская Энциклопедия (цитаты)

Фурье ряд

Фурье ряд (далее Ф) тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то ее Ф имеет вид

,

где a0, an, bn (n ³ 1) - Фурье коэффициенты. В зависимости от того, в каком смысле понимаются интегралы в формулах для коэффициентов, говорят о рядах Фурье - Римана, Фурье - Лебега и т.д. Обычно рассматривают 2p-периодические функции (общий случай сводится к ним преобразованием независимого переменного).

  Ф представляют собой простейший класс разложений по ортогональной системе функций, а именно - по тригонометрической системе 1, cos x, sin x, cos 2x, sin 2x,..., cos nx, sin nx,..., которая обладает двумя важными свойствами: замкнутостью и полнотой. Частичные суммы Ф (суммы Фурье)



обращают в минимум интеграл

,

где tn (x) - произвольный тригонометрический полином порядка £ n, а функция f (x) интегрируема с квадратом. При этом

 ,

так что функции f (x), имеющие интегрируемый квадрат, сколь угодно хорошо аппроксимируются своими суммами Фурье в смысле среднего квадратичного уклонения (см. Приближение и интерполирование функций).

  Для любой интегрируемой функции f (x) коэффициенты Фурье an, bn при n ® ¥ стремятся к нулю (Б. Риман, А. Лебег). Если же функция f (x) несобственно интегрируема по Риману, то коэффициенты Фурье могут и не стремиться к нулю (Риман). В случае, если квадрат функции f (x) интегрируем, то ряд  сходится и имеет место равенство Парсеваля

.

  Один из вариантов этой формулы был впервые указан французским математиком М. Парсевалем (1799), а общая формула (где интеграл понимается в смысле Лебега) доказана Лебегом. Обратно, для любой последовательности действительных чисел an, bn со сходящимся рядом  существует функция с интегрируемым по Лебегу квадратом, имеющая эти числа своими коэффициентами Фурье (немецкий математик Э. Фишер, венгерский математик Ф. Рис). Для интегралов в смысле Римана эта теорема неверна.

  Известно большое число признаков сходимости Ф, т. е. достаточных условий, гарантирующих сходимость ряда. Например, если функция f (x) имеет на периоде конечное число максимумов и минимумов, то ее Ф сходится в каждой точке (П. Дирихле). Более общо, если f (x) имеет ограниченное изменение (см. Изменение функции), то ее Ф сходится в каждой точке и притом равномерно на каждом отрезке, внутреннем к отрезку, на котором f (x) непрерывна (К. Жордан). Если f (x) непрерывна и ее модуль непрерывности w(d, f) удовлетворяет условию , то ее Ф равномерно сходится (итальянский математик У. Дини, 1880).

  Проблема полного исследования условий сходимости Ф оказалась весьма трудной, и в этом направлении до сих пор нет окончательных результатов. Как показал Риман, сходимость или расходимость Ф в некоторой точке x0 зависит от поведения функции f (x) лишь в сколь угодно малой окрестности этой точки (т. н. принцип локализации для Ф). Если в точке x0 функция f (x) имеет разрыв первого рода, т. с. существуют различные пределы f (x0 - 0) и f (x0 + 0), и Ф этой функции сходится в точке x0, то он сходится к значению 1/2{f (x0 - 0) + f (x0 + 0)}. В частности, если Ф непрерывной периодической функции f (x) сходится в каждой точке, то его сумма равна f (x).

  Известно, что существуют непрерывные функции, Ф которых расходятся в бесконечном числе точек (немецкий математик П. дю Буа-Реймон, 1875), и интегрируемые в смысле Лебега функции, Ф которых расходятся в каждой точке (А. Н. Колмогоров, 1926). Однако Ф всякой интегрируемой с квадратом функции сходится почти всюду (Л. Карлесон, 1966). Этот результат верен и для функций из любого пространства Lp (-p, p) с p < 1 (Р. Хант, 1968). Упомянутые "дефекты сходимости" породили методы суммирования Ф Вместо того чтобы исследовать поведение сумм Фурье, исследуют средние, образованные из этих сумм, поведение которых в ряде случаев оказывается значительно более правильным. Например, для любой непрерывной периодической функции f (x) сумма Фейера



при n ® ¥ равномерно сходятся к f (x) (Л. Фейер, 1904).

  Лит.: Толстов Г. П., Ряды Фурье, 2 изд., М., 1960; Н. К., Тригонометрические ряды, М., 1961; Зигмунд А., Тригонометрические ряды, пер. с англ., т. 1-2, М., 1965.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 19.07.2018 16:39:03


16:27 Лауреата Нобелевской премии спустя век обвинили в расизме
16:23 В России начали подделывать новые деньги
16:20 Новым врагом Джеймса Бонда впервые за 20 лет станет русский
16:19 Месси подобрал нового игрока для «Барселоны»
16:06 Встречу военного летчика и пса после долгой разлуки сняли на видео
15:57 Подсчитаны огромные расходы на военный парад в Вашингтоне
15:55 Украинские радикалы разогнали собрание «патриотических сил»
15:51 Япония подчинилась США
15:13 Появились новые подробности конфликта между россиянином и украинцем в Турции