|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Устойчивость системы автоматического управления | Устойчивость (далее У) системы автоматического управления, способность системы автоматического управления (САУ) нормально функционировать и противостоять различным неизбежным возмущениям (воздействиям). Состояние САУ называется устойчивым, если отклонение от него остается сколь угодно малым при любых достаточно малых изменениях входных сигналов. У. САУ разного типа определяется различными методами. Точная и строгая теория У. систем, описываемых обыкновенными дифференциальными уравнениями, создана А. М. Ляпуновым в 1892.
Все состояния линейной САУ либо устойчивы, либо неустойчивы, поэтому можно говорить об У. системы в целом. Для У. стационарной линейной СЛУ, описываемой обыкновенными дифференциальными уравнениями, необходимо и достаточно, чтобы все корни соответствующего характеристического уравнения имели отрицательные действительные части (тогда САУ асимптотически устойчива). Существуют различные критерии (условия), позволяющие судить о знаках корней характеристического уравнения, не решая это уравнение – непосредственно по его коэффициентам. При исследовании У. САУ, описываемых дифференциальными уравнениями невысокого порядка (до 4-го), пользуются критериями Рауса и Гурвица (Э. Раус, англ. механик; А. Гурвиц, нем. математик). Однако этими критериями пользоваться во многих случаях (например, в случае САУ, описываемых уравнениями высокого порядка) практически невозможно из-за необходимости проведения громоздких расчетов; кроме того, само нахождение характеристических уравнений сложных САУ сопряжено с трудоемкими математическими выкладками. Между тем частотные характеристики любых сколь угодно сложных СЛУ легко находятся посредством простых графических и алгебраических операций. Поэтому при исследовании и проектировании линейных стационарных САУ обычно применяют частотные критерии Найквиста и Михайлова (Х. Найквист, амер. физик; А. В. Михайлов, сов. ученый в области автоматического управления). Особенно прост и удобен в практическом применении критерий Найквиста. Совокупность значений параметров САУ, при которых система устойчива, называется областью У. Близость САУ к границе области У. оценивается запасами У. по фазе и по амплитуде, которые определяют по амплитудно-фазовым характеристикам разомкнутой САУ. Современная теория линейных САУ дает методы исследования У. систем с сосредоточенными и с распределенными параметрами, непрерывных и дискретных (импульсных), стационарных и нестационарных.
Проблема У. нелинейных САУ имеет ряд существенных особенностей в сравнении с линейными. В зависимости от характера нелинейности в системе одни состояния могут быть устойчивыми, другие – неустойчивыми. В теории У. нелинейных систем говорят об У. данного состояния, а не системы как таковой. У. какого-либо состояния нелинейной САУ может сохраняться, если действующие возмущения достаточно малы, и нарушаться при больших возмущениях. Поэтому вводятся понятия У. в малом, большом и целом. Важное значение имеет понятие абсолютной У., т. е. У. САУ при произвольном ограниченном начальном возмущении и любой нелинейности системы (из определенного класса нелинейностей). Исследование У. нелинейных САУ оказывается довольно сложным даже при использовании ЭВМ. Для нахождения достаточных условий У. часто применяют метод функций Ляпунова. Достаточные частотные критерии абсолютной У. предложены рум. математиком В. М. Поповым и др. Наряду с точными методами исследования У. применяются приближенные методы, основанные на использовании описывающих функций, например методы гармонической или статистической линеаризации.
У САУ при воздействии на нее случайных возмущений и помех изучается теорией У. стохастических систем.
Современная вычислительная техника позволяет решать многие проблемы У. линейных и нелинейных САУ различных классов как путем использования известных алгоритмов, так и на основе новых специфических алгоритмов, рассчитанных на возможности современных ЭВМ и вычислительных систем.
Лит.: Ляпунов А. М., Общая задача об устойчивости движения, Собр. соч., т. 2, М. – Л., 1956; Воронов А. А., Основы теории автоматического управления, т, 2, М. – Л., 1966; Наумов Б. Н., Теория нелинейных автоматических систем. Частотные методы, М., 1972; Основы автоматического управления, под ред. В. С. Пугачева, 3 изд., М., 1974.
В. С. Пугачев, И. Н. Синицын.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 21.11.2024 13:25:06
|
|
|
|
|
|
|
|
|
|