Большая Советская Энциклопедия (цитаты)

Симметрические функции

Симметрические функции (далее С)функции нескольких переменных, не изменяющиеся при любых перестановках переменных, например  или . Особое значение в алгебре имеют симметрические многочлены (с. м.) и среди них — элементарные симметрические многочлены (э. с. м.) — функции

  , , , …, ,

  где суммы распространены на комбинации неравных между собой чисел k, l,...; они имеют первую степень относительно каждого из переменных. Согласно формулам Виета, x1, x2,..., xn являются корнями уравнения:

  xn - f1xn-1 + f2xn-2 - ··· + (- 1) nfn = 0.

Согласно основной теореме теории Симметрические функции, любой с. м. представляется как многочлен от э. с. м., и притом только единственным образом: (x1, x2.,..., xn) = G (f1, f2,..., fn); если все коэффициенты в целые, то и коэффициенты в G целые. Иными словами, всякий с. м. от корней уравнения выражается целым рациональным образом через его коэффициенты; например,

  .

  Другим важным классом Симметрические функции являются степенные суммы

  .

  Они связаны с э. с. м. формулами Ньютона

  si - f1sl-1 + f2sl-2 + ··· + (— 1) lfl = 0, ,

  и

  sn+l - f1sn+l-1 + ··· +(-1) n fnsl = 0,

  ,

  позволяющими последовательно выражать fk через srn и обратно.

  Функция называется кососимметрической, или знакопеременной, если она не изменяется при четных перестановках x1, x2,..., xn и меняет знак при нечетных перестановках. Такие функции рационально выражаются через f1, f2,..., fn и разностное произведение (см. Дискриминант) D = Пк<1 (xk xl), квадрат которого является Симметрические функции и потому рационально выражается через f1, f2,..., fn.

 

  Лит.: Курош А. Г., Курс высшей алгебры, 10 изд., М., 1971.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 19.04.2024 05:11:40