Большая Советская Энциклопедия.

Большая Советская Энциклопедия (цитаты)

Релаксация (физич.)

Релаксация (далее Р) (от лат. relaxatio — ослабление, уменьшение), процесс установления термодинамического, а следовательно, и статистического равновесия в физической системе, состоящей из большого числа частиц. Р (физич.) — многоступенчатый процесс, т. к. не все физические параметры системы (распределение частиц по координатам и импульсам, температура, давление, концентрация в малых объемах и во всей системе и др.) стремятся к равновесию с одинаковой скоростью. Обычно сначала устанавливается равновесие по какому-либо параметру (частичное равновесие), что также называется Р (физич.) Все процессы Р (физич.) являются неравновесными процессами, при которых в системе происходит диссипация энергии, т. е. производится энтропия (в замкнутой системе энтропия возрастает). В различных системах Р (физич.) имеет свои особенности, зависящие от характера взаимодействия между частицами системы; поэтому процессы Р (физич.) весьма многообразны. Время установления равновесия (частичного или полного) в системе называется временем релаксации.

  Процесс установления равновесия в газах определяется длиной свободного пробега частиц l и временем свободного пробега t (среднее расстояние и среднее время между двумя последовательными столкновениями молекул). Отношение l/t имеет порядок величины скорости частиц. Величины l и t очень малы по сравнению с макроскопическими масштабами длины и времени. С др. стороны, для газов время свободного пробега значительно больше времени столкновения t0 (t >> t0). Только при этом условии Р (физич.) определяется лишь парными столкновениями молекул.

  В одноатомных газах (без внутренних степеней свободы, т. е. обладающих только поступательными степенями свободы) Р (физич.) происходит в два этапа. На первом этапе за короткий промежуток времени, порядка времени столкновения молекул то, начальное, даже сильно неравновесное, состояние хаотизируется таким образом, что становятся несущественными детали начального состояния и оказывается возможным т. н. "сокращенное описание" неравновесного состояния системы, когда не требуется знания вероятности распределения всех частиц системы по координатам и импульсам, а достаточно знать распределение одной частицы по координатам и импульсам в зависимости от времени, т. е. одночастичную функцию распределения молекул. (Все остальные функции распределения более высокого порядка, описывающие распределения по состояниям двух, трех и т. д. частиц, зависят от времени лишь через одночастичную функцию). Одночастичная функция удовлетворяет кинетическому уравнению Больцмана, которое описывает процесс Р (физич.) Этот этап называется кинетическим и является очень быстрым процессом Р (физич.) На втором этапе за время порядка времени свободного пробега молекул и в результате всего нескольких столкновений в макроскопически малых объемах системы устанавливается локальное равновесие; ему соответствует локально-равновесное, или квазиравновесное, распределение, которое характеризуется такими же параметрами, как и при полном равновесии системы, но зависящими от пространственных координат и времени. Эти малые объемы содержат еще очень много молекул, а поскольку они взаимодействуют с окружением лишь на своей поверхности, их можно считать приближенно изолированными. Параметры локально-равновесного распределения в процессе Р (физич.) медленно стремятся к равновесным, а состояние системы обычно мало отличается от равновесного. Время Р (физич.) для локального равновесия tр " t0. После установления локального равновесия для описания Р (физич.) неравновесного состояния системы служат уравнения гидродинамики (Навье — Стокса уравнения, уравнения теплопроводности, диффузии и т.п.). При этом предполагается, что термодинамические параметры системы (плотность, температура и т. д.) и массовая скорость (средняя скорость переноса массы) мало меняются за время t и на расстоянии l. Этот этап Р (физич.) называется гидродинамическим. Дальнейшая Р (физич.) системы к состоянию полного статистического равновесия, при котором выравниваются средние скорости частиц, средняя температура, средняя концентрация и т. д., происходит медленно в результате очень большого числа столкновений. Такие процессы (вязкость, теплопроводность, диффузия, электропроводность и т. п.) называются медленными. Соответствующее время . tp зависит от размеров L системы и велико по сравнению с t: t0 ~ t(L/l)2 >> t, что имеет место при l << L, т.е. для не сильно разреженных газов.

  В многоатомных газах (с внутренними степенями свободы) может быть замедлен обмен энергией между поступательными и внутренними степенями свободы, и возникает процесс Р (физич.), связанный с этим явлением. Быстрее всего — за время порядка времени между столкновениями — устанавливается равновесие по поступательным степеням свободы; такое равновесное состояние можно охарактеризовать соответствующей температурой. Равновесие между поступательными и вращательными степенями свободы устанавливается значительно медленнее. Возбуждение колебательных степеней свободы может происходить лишь при высоких температурах. Поэтому в многоатомных tгазах возможны многоступенчатые процессы Р (физич.) энергии колебательных и вращательных степеней свободы.

  В смесях газов с сильно различающимися массами молекул замедлен обмен энергией между компонентами, вследствие чего возможно возникновение состояния с различными температурами компонент и процессы Р (физич.) их температур. Например, в плазме сильно различаются массы ионов и электронов. Быстрее всего устанавливается равновесие электронной компоненты, затем приходит в равновесие ионная компонента, и значительно большее время требуется для установления равновесия между электронами и ионами; поэтому в плазме могут длительное время существовать состояния, в которых ионные и электронные температуры различны а, следовательно, происходят процессы Р (физич.) температур компонент.

  В жидкостях теряет смысл понятие времени и длины свободного пробега частиц (а следовательно, и кинетического уравнения для одночастичной функции распределения). Аналогичную роль для жидкости играют величины t1 и l1 — время и длина корреляции динамических переменных, описывающих потоки энергии или импульса; t1 и l1 характеризуют затухание во времени и в пространстве взаимного влияния молекул, т. е. корреляции. При этом полностью остается в силе понятие гидродинамического этапа Р (физич.) и локально-равновесного состояния. В макроскопически малых объемах жидкости, но еще достаточно больших по сравнению с длиной корреляции l1, локально-равновесное распределение устанавливается за время порядка времени корреляции t1(tp " t1) в результате интенсивного взаимодействия между молекулами (а не парных столкновений, как в газе), но эти объемы по-прежнему можно считать приближенно изолированными. На гидродинамическом этапе Р (физич.) в жидкости термодинамические параметры и массовая скорость удовлетворяют таким же уравнениям гидродинамики, как и для газов (при условии малости изменения термодинамических параметров и массовой скорости за время t1 и на расстоянии l1). Время Р (физич.) к полному термодинамическому равновесию tp " t1 (L/l1)2 (так же, как в газе и твердом теле) можно оценить с помощью кинетических коэффициентов (см. Кинетика физическая). Например, время Р (физич.) концентрации в бинарной смеси в объеме L3 порядка tp " L2/D, где D — коэффициент диффузии, время Р (физич.) температуры tp " L2/c где c коэффициент температуропроводности, и т. д. Для жидкости с внутренними степенями свободы молекул возможно сочетание гидродинамического описания поступательных степеней свободы с дополнительными уравнениями для описания Р (физич.) внутренних степеней свободы (релаксационная гидродинамика).

  В твердых телах, как и в квантовых жидкостях, Р (физич.) можно описывать как Р (физич.) в газе квазичастиц. В этом случае можно ввести время и длину свободного пробега соответствующих квазичастиц (при условии малости возбуждения системы). Например, в решетке при низких температурах упругие колебания можно трактовать как газ фононов. Взаимодействие между фононами приводит к квантовым переходам, т. е. к столкновениям между ними. Р (физич.) энергии в решетке описывается кинетическим уравнением для фононов. В системе спиновых моментов ферромагнетика квазичастицами являются магноны; Р (физич.) (например, намагниченности) можно описывать кинетическим уравнением для магнонов. Р (физич.) момента в ферромагнетике происходит в два этапа: на первом этапе за счет относительно сильного обменного взаимодействия устанавливается равновесное значение абсолютной величины момента. На втором этапе за счет слабого спин-орбитального взаимодействия момент медленно ориентируется вдоль оси легкого намагничивания; этот этап аналогичен гидродинамическому этапу Р (физич.) в газах (см. Р магнитная).

 

  Лит.: Уленбек Д., форд Дж., Лекции по статистической механике, пер. с англ., М., 1965. См. также лит. при ст. Кинетика физическая.

  Д. Н. Зубарев.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 16.01.2018 22:42:39

21:53 Трамп открестился от своего мнения о «сраных дырах»
21:44 Названа дата боя Нурмагомедова и Фергюсона за титул чемпиона UFC
21:09 Названа стоимость нового лимузина Путина
20:54 Ким Кардашьян и Канье Уэст в третий раз стали родителями
20:22 Всемирный банк пригрозил снять Украину с финансирования
20:09 Интимные фото пользователей обнаружили в руках тайных модераторов