Большая Советская Энциклопедия (цитаты)

Равностепенная непрерывность

Равностепенная непрерывность (далее Р) важное свойство некоторых семейств функций. Семейство функций называется равностепенно непрерывным на данном отрезке (а, b), если для всякого числа e > 0 найдется такое d > 0, что ïf (x2) — f (x1)ï < e для любых x1 и x2 из (а, b) для которых ïx2 — x1ï < d, и для любой функции f (x) данного семейства. Все функции равностепенно непрерывного семейства равномерно непрерывны на (a, b) (см. Равномерная непрерывность).

  Свойство Р семейства функций находит приложения в теории дифференциальных уравнений и функциональном анализе благодаря следующей теореме: для того чтобы из данного семейства функций можно было выделить равномерно сходящуюся последовательность (см. Равномерная сходимость), необходимо и достаточно, чтобы семейство функций было равностепенно непрерывно и равномерно ограниченно (т. е. чтобы все функции семейства удовлетворяли на (а, b) условию ïf (x)ï £ M с одним и тем же М). Возможность выделить равномерно сходящуюся последовательность означает, что данное семейство образует относительно компактное множество в пространстве С непрерывных функций (см. Компактность).

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 21.11.2024 11:38:32