Большая Советская Энциклопедия.

Большая Советская Энциклопедия (цитаты)

Показательное распределение

Показательное распределение (далее П), распределение вероятностей на действительной прямой с плотностью вероятностей р (х), равной при х ³ 0 показательной функции le-lx, l > 0 (отсюда название П) и при х < 0 - нулю. Вероятность того, что случайная величина X, имеющая П, примет значения, превосходящие некоторое произвольное число х, будет при этом равна e-lx. Математическое ожидание и дисперсия случайной величины X равны соответственно 1/l и 1/l2. П является единственным непрерывным распределением вероятностей, обладающим тем свойством, что для любых значений x1 и x2 выполняется равенство

(X > x1 +x2) = (X > x1) (X > x2)

(т. н. свойство "отсутствия последействия"). Указанным характеристическим свойством в значительной мере объясняется, например, та роль, которую П играет в задачах массового обслуживания теории, где предположение о П времени обслуживания является естественным. П тесно связано с понятием пуассоновского процесса; промежутки между последовательными событиями в таком процессе суть независимые случайные величины, имеющие П; при этом l равно среднему числу событий в единицу времени.

  Лит.: Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., т. 1-2, М., 1967.

  А. В. Прохоров.

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 17.12.2017 20:34:26


20:18 Закурившего в самолете пассажира экстренно высадили в Волгограде
19:31 Генпрокуратура впервые запросила пожизненное наказание для наркоторговца
19:20 Российские хоккеисты разгромили Финляндию и победили на домашнем этапе Евротура
18:59 Саакашвили открестился от штурмовавших дворец в Киеве
18:39 Пассажиры московского метро выпили 360 литров бесплатного чая
18:21 Появилось видео штурма протестующими дворца в Киеве