Большая Советская Энциклопедия (цитаты)

Плазменные ускорители

Плазменные ускорители (далее П) устройства для получения потоков плазмы со скоростями 10—103 км/сек и более, что соответствует кинетической энергии ионов от ~10 эв до 105—106 эв. На нижнем пределе энергии П соседствуют с генераторами низкотемпературной плазмы — плазматронами, на верхнем — с коллективными ускорителями заряженных частиц (см. Ускорения заряженных частиц коллективные методы). Как правило, П являются ускорителями полностью ионизованной плазмы, поэтому процессы возбуждения и ионизации, а также тепловые процессы играют в них, в отличие от плазматронов, вспомогательную роль.

  Плазменные потоки с большими скоростями можно получить разными способами, например воздействием лазерного луча на твердое тело. Однако к собственно П относят лишь устройства (рис. 1), в которых ускорение и обычно одновременное приготовление плазмы осуществляются за счет электрической энергии с помощью одного или нескольких специальных электрических разрядов.

  В отличие от ускорителей заряженных частиц, в канале П находятся одновременно частицы с зарядами обоих знаков — положительные ионы и электроны, т. е. не происходит нарушения квази-нейтральности. Это снимает ограничения, связанные с объемным (пространственным) зарядом (см. Ленгмюра формула), и позволяет получать плазменные потоки с эффективным током ионов в несколько млн. а при энергии частиц ~ 100 эв. При ионных токах ~ 1000 а уже достигнута энергия частиц в несколько кэв.

  Из П ионы и электроны выходят практически с равными направленными скоростями, так что основная энергия потока приходится на ионы (вследствие их большой массы). Поэтому П — это электрические системы, ускоряющие ионы в присутствии электронов, компенсирующих объемный заряд ионов.

  Механизм ускорения. При анализе рабочего процесса в П плазму можно рассматривать и как сплошную среду, и как совокупность частиц (ионов и электронов). В рамках первого подхода ускорение плазмы обусловлено перепадом полного (ионного и электронного) давления p = pi + pe и действием силы Ампера Aмп (см. Ампера закон), возникающей при взаимодействии токов, текущих в плазме, с полем, Aмп ~ (jB), где j — плотность тока в плазме, В — индукция поля.

  В рамках второго подхода ускорение ионов может происходить в результате: 1) действия электрического поля Е, существующего в плазменном объеме; 2) столкновений направленного потока электронов с ионами ("электронного ветра"); 3) столкновений ионов с ионами, благодаря которым энергия хаотического движения ионов переходит в направленную (тепловое или газодинамическое ускорение ионов). Наибольшее значение для П имеет электрическое ускорение ионов, меньшее — два последних механизма.

  Классификация плазменных ускорителей. П делятся на тепловые и электромагнитные в зависимости от того, преобладает ли в процессе ускорения перепад полного давления р или сила Ампера.

  Среди тепловых П основной интерес представляют неизотермические ускорители, в которых pe >> pi. Это объясняется тем, что обычно трудно создать плазму с высокой температурой ионов Ti, и сравнительно просто — с "горячими" электронами (Te >> Ti). Такая плазма является неизотермической. Конструктивно неизотермический ускоритель представляет собой "магнитное сопло" (рис. 2), в котором либо путем инжекции быстрых электронов, либо путем электронного циклотронного резонанса создают плазму с "горячими" электронами, Te ~ 107109 К, или в энергетических единицах: kTe ~ 103105 эв (где k Больцмана постоянная).

Электроны, стремясь покинуть камеру, создают электрическое поле объемных зарядов, которое "вытягивает" (ускоряет) ионы, сообщая им энергию порядка kTe.

  Электромагнитные П подразделяются по характеру подвода энергии к плазме. Различают три класса:

  а) радиационные ускорители, в которых ускорение плазменного потока происходит за счет давления электромагнитной волны, падающей на плазменный сгусток (рис. 3, а); б) индукционные ускорители — импульсные системы, в которых внешнее нарастающее поле В индуцирует ток j в плазменном кольце (рис. 3, б), созданном тем пли иным способом. Взаимодействие этого тока с радиальной составляющей внешнего поля создает силу Ампера, которая и ускоряет плазменное кольцо; в) электродные плазменные ускорители, в которых существует непосредственный контакт ускоряемой плазмы с электродами, подключенными к источнику напряжения. При амперовом взаимодействии этого тока с внешним (т. е. созданным автономными системами) или собственным (созданным током, протекающим через плазму) полем происходит ускорение плазмы. Наиболее изученными и многочисленными являются электродные П, которые ниже будут рассмотрены подробнее.

  А. П с собственным полем

  Импульсные электродные ускорители (пушки). Первым П был "рельсотрон" (рис. 4, а), питаемый конденсаторной батареей. Плазменный сгусток создается при пропускании большого тока через тонкую проволоку, натянутую между рельсами, которая при этом испаряется и ионизуется, или за счет ионизации газа, впрыскиваемого в межэлектродный промежуток через специальный клапан. При разряде на ток в плазменной перемычке (достигающий десятков и сотен ка) действует собственное поле электрического контура, в результате чего за время порядка 1 мксек и происходит ускорение сгустка. Позднее импульсным ускорителям был придан вид коаксиальной системы (рис. 4, б). В этом случае ускорение сгустка плазмы происходит под действием силы Ампера aмп, возникающей при взаимодействии радиальной составляющей тока jr с азимутальным собственным полем f. Такие П уже нашли широкое применение и позволяют получать сгустки со скоростями до 108 см/сек и общим числом частиц до 1018.

  Стационарные сильноточные торцевые ускорители. В принципе коаксиальный ускоритель можно сделать стационарным (работающим в непрерывном режиме), если непрерывно подавать в зазор между электродами рабочее вещество (ионизуемый газ). Однако вследствие Холла эффекта при стационарном разряде в ускорителе электрический ток имеет значительную продольную составляющую. Благодаря этому происходит "отжатие" плазмы к катоду, образование прианодных скачков потенциала и т.п., что ведет к резкому уменьшению кпд. В связи с этим более эффективной оказывается "торцевая" схема (рис. 5, а) с коротким катодом, через который одновременно подается рабочее вещество. Ускорение плазмы в торцевом П происходит также в основном за счет силы Ампера, возникающей при взаимодействии радиальной составляющей jr, тока j с азимутальным полем f. Если при постоянной подаче рабочего вещества непрерывно увеличивать разрядный ток p, то сначала скорость истечения плазмы и кпд ускорителя будут расти. Однако при некотором значении p происходит вынос большой части разрядного тока за срез ускорителя, резко возрастает напряжение и падает кпд, в ускорителе возникают колебания. Наступает так называемый критический режим. Его физической причиной является, по-видимому, пинч-эффект, в результате которого плазменный шнур отрывается от анода.

  На нормально работающих торцевых ускорителях с собственным полем при разрядных токах около 104 а удается получать стационарные потоки плазмы со скоростями ~ 100 км/сек и характерными расходами рабочего вещества ~0,01—0,1 г/сек. При этом напряжение на разряде составляет около 50 в.

  Описанный торцевой ускоритель становится неработоспособным не только при больших, но и при малых разрядных токах p, поскольку сила Ампера пропорциональна p2. Поэтому при /р < 1000 а роль силы Ампера в реальных условиях становится меньше, чем газокинетическое давление, и торцевой П превращается в обычный плазматрон. Чтобы увеличить эффективность торцевого ускорителя при малых мощностях, в рабочем канале создают внешнее поле (рис. 5, б). Получающийся ускоритель называется торцевым холловским ускорителем, или ускорителем. Он позволяет получать потоки плазмы со скоростями в десятки км/сек при мощности ³ 10 квт. Замечательная особенность торцевых ускорителей — способность создавать потоки частиц с энергией, в несколько раз превосходящей приложенную разность потенциалов. На языке динамики частиц это объясняется увлечением ионов за счет столкновений с электронным потоком, идущим из катода ("электронным ветром").

  Б. П с внешним полем

  Если требуется получать стационарные потоки малой мощности (£ 10 квт) или потоки частиц с большими скоростями (³ 108 см/сек), особенно удобными оказываются так называемые "П с замкнутым дрейфом", один из видов которых схематически изображен на рис. 6. Это осесимметричная система с радиальным полем в кольцевом ускорительном канале, в котором находится плазма. Работу данного П проще понять, рассматривая динамику электронов и ионов.

  Если между анодом и катодом приложить разность потенциалов, то электроны начнут дрейфовать (т. е. двигаться в среднем с постоянной скоростью) перпендикулярно электрическому Е и Н полям, описывая кривые, близкие к циклоиде. Длина ускорительного канала L выбирается так, чтобы высота электронной циклоиды he была много меньше L (L >> he). В этом случае говорят, что электроны "замагничены". Высота ионной циклоиды hi в силу большой массы (Mi) иона в Mi/me раз превосходит he (me масса электрона). Поэтому, если сделать длину канала L много меньше hi, то ионы будут слабо отклоняться полем и под действием электрического поля будут ускоряться практически по прямой линии. Энергия, набираемая ионами в таком ускорителе, близка к разности потенциалов, приложенной между анодом и катодом, умноженной на заряд иона, а разрядный ток близок к току ускоренных ионов. В целом рабочий процесс в описываемом П происходит следующим образом. Рабочее вещество в виде газа или пара поступает через анод в кольцевой ускорительный канал УК (рис. 6). Здесь, попав в облако дрейфующих по азимуту электронов (под действием взаимно перпендикулярных и электрического Е полей), нейтральный ионизуется. Возникший в процессе ионизации электрон за счет столкновений с ионами, стенкой диэлектрической камеры ДК и под влиянием колебаний диффундирует на анод, а ион, ускоренный электрическим полем, покидает канал. Поскольку объемный заряд ионов, находящихся в канале, все время компенсирован зарядом дрейфующих электронов, здесь (в отличие от ионных источников) нет ограничений на величину "вытягиваемого" ионного тока. После выхода из канала ион (чтобы не возникло нарушение квазинейтральности) получает электрон от катода-компенсатора КК. Существует ряд модификаций П с замкнутым дрейфом (с анодным слоем, однолинзовые, многолинзовые и т.п.). Эти ускорители позволяют получать плазменные потоки с эффективным током ионов от единиц до многих сотен а с энергией от 100 эв до 10 кэв и более.

  Применения плазменных ускорителей. Первые П появились в середине 1950-х гг. и уже нашли применение как электрореактивные двигатели, в технологии для чистки поверхностей (методом катодного распыления), нанесения металлических пленок на различные поверхности, в исследованиях по ионосферной аэродинамике и экспериментальной астрофизике (моделирование космических явлений), в термоядерных исследованиях (в качестве инжекторов плазмы), плазмохимии и т.д. По мере совершенствования конструкции и достижения новых параметров область применения П будет непрерывно расширяться.

  Лит.: П, под ред. Л. А. Арцимовича (и др.), М., 1973.

  А. И. Морозов.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 29.03.2024 18:00:58