Большая Советская Энциклопедия.

Большая Советская Энциклопедия (цитаты)

Обратные тригонометрические функции

Обратные тригонометрические функции (далее О), аркфункции, круговые функции, решают следующую задачу: найти дугу (число) по заданному значению ее тригонометрической функции. Шести основным тригонометрическим функциям соответствуют шесть О: 1) Arc sin х ("арксинус x") — функция, обратная sin х; 2) Arc cos x ("арккосинус x") — функция, обратная cos х; 3) Arc tg x ("арктангенс x") — функция, обратная tg х; 4) Arc ctg x ("арккотангенс x") — функция, обратная ctg x; 5) Arc sec x ("арксеканс x") — функция, обратная sec x; 6) Arc cosec x ("арккосеканс x") — функция, обратная cosec x. Согласно этим определениям, например, х = Arc sin a есть любое решение уравнения sin х = a, т.е. sin Arc sin a = a. Функции Arc sin x и Arc cos x определены (в действительной области) для |х| £ 1, функции Arc tg х и Arc ctg х — для всех действительных х, а функции Arc sec х и Arc cosec х:—для |х| ³ 1; две последние функции малоупотребительны.

  Так как тригонометрические функции периодические, то обратные к ним функции являются многозначными функциями. Определенные однозначные ветви (главные ветви) этих функций обозначаются так: arc sin х, arc cos x,..., arc cosec x. Именно, arc sin х есть та ветвь функции Arc sin х, для которой — p/2 £ arc sin х £ p/2. Аналогично, функции arc cos х, arc tg х и arc ctg х определяются из условий: 0 £ arc cos х £ p, — p/2 < arc tg x < p/2, 0 <arc ctg x < p. На рис. изображены графики функций у = Arc sin x, у = Arc cos x, у = Arc tg x, у = Arc ctg x; главные Arc cos x = ± arc cos x +2pn,ветви этих функций выделены жирной линией. О Arc sin х,... легко выражаются через arc sin x,..., например



n = 0, ±1, ±2, …

  Известные соотношения между тригонометрическими функциями приводят к соотношениям между О, например из формулы



вытекает, что



Производные О имеют вид








О могут быть представлены степенными рядами, например<




эти ряды сходятся для —1 £ x £ 1.

  О можно определить для произвольных комплексных значений аргумента; однако их значения будут действительными лишь для указанных выше значений аргумента. О комплексного аргумента могут быть выражены с помощью логарифмической функции, например

.

 

  Лит.: Новоселов С. И., О, 3 изд., М., 1950.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 16.08.2017 18:01:36


17:52 Голубая дорожная разметка появится в Москве
17:48 Путин призвал убедить Минск перевозить нефтепродукты по российским дорогам
17:31 Обожающий ходить в школу пес Руди поднял настроение пользователям сети
17:16 В США нашли огромные запасы лития
17:15 В Балтиморе снесли памятники конфедератам
17:02 В СБУ заявили о разоблачении агента ФСБ в собственных рядах