Большая Советская Энциклопедия.

Большая Советская Энциклопедия (цитаты)

Кольцо алгебраическое

Кольцо (далее К) алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных, отрицательных чисел и нуля; 2) множество всех четных чисел и вообще целых чисел, кратных данному числу n, 3) множество всех рациональных чисел. Общим в этих трех примерах является то, что сложение и умножение чисел, входящих в систему, не выводят за пределы системы (следует отметить, что и вычитание не выводит за пределы системы). В различных областях математики часто приходится иметь дело с разнообразными множествами (они могут состоять, например, из многочленов или матриц, см. примеры 7 и 9), над элементами которых можно производить две операции, весьма похожие по своим свойствам на сложение и умножение обычных чисел. Предметом теории К. является изучение свойств обширного класса такого рода множеств.

  Км называют непустое множество R, для элементов которого определены две операции — сложение и умножение, сопоставляющие любым двум элементам а, b из R, взятым в определенном порядке, один элемент а + b из R — их сумму и один элемент ab из R — их произведение, причем предполагаются выполненными следующие условия (аксиомы К.):

.     Коммутативность сложения:

а+b=b+ а.

.   Ассоциативность сложения:

а + (b + с) = (а + b) + с.

  . Обратимость сложения (возможность вычитания): уравнение а + х = b допускает решение х = b—a.

  . Дистрибутивность: а (b + с) = ab+ac, (b + с) а = ba + са.

  Перечисленные свойства показывают, что элементы К. образуют коммутативную группу относительно сложения. Дальнейшими примерами К. могут служить множества; 4) всех действительных чисел; 5) всех комплексных чисел; 6) комплексных чисел вида a + bi с целыми а, b; 7) многочленов от одного переменного х с рациональными, действительными или комплексными коэффициентами; 8) всех функций, непрерывных на данном отрезке числовой прямой; 9) всех квадратных матриц порядка n с действительными (или комплексными) элементами; 10) всех кватернионов; 11) всех чисел Кэли — Диксона, то есть выражений вида a + bе, где a, b — кватернионы, е — буква; сложение и умножение чисел Кэли — Диксона определяются равенствами (a + bе) + (a1 + b1e) = (a + a1) + (b + b1) e, (a + bе)(a1 + b1e) = (aa1 — b1) + (aa1 + b) e, где  — кватернион, сопряженный к a; 12) всех симметрических матриц порядка n с действительными элементами относительно операций сложения матриц и "йорданового" умножения а·b = (аb + ba); 13) векторов трехмерного пространства при обычном сложении и векторном умножении.

  Во многих случаях на умножение в К. налагаются дополнительные ограничения. Так, если а (bc) = (ab) c, то К. называют ассоциативным (примеры 1—10); если в К. выполняются равенства (aa) b = a (ab), (ab) b = a (bb), то оно называется альтернативным кольцом (пример 11); если в К. выполняются равенства ab = ba, (ab) (аа) = ((аа) b) a, то оно называется йордановым кольцом (пример 12); если в К. выполняются равенства а (bc) + b (ca) + с (аb) = 0, a2 = 0, то оно называется кольцом Ли (пример 13); если ab = ba, то К. называют коммутативным (примеры 1—8, 12). Операции сложения и умножения в К. во многом похожи по своим свойствам на соответствующие операции над числами. Так, элементы К. можно не только складывать, но и вычитать; существует элемент 0 (нуль) с обычными свойствами; для любого элемента а существует противоположный, т. е. такой элемент —а, что а + (—a) = 0; произведение любого элемента на элемент 0 всегда равно нулю. Однако на примерах 8—9, 12—13 можно убедиться, что К. может содержать отличные от нуля элементы а, b, произведение которых равно нулю: ab = 0; такие элементы называют делителями нуля. Ассоциативное коммутативное К. без делителей нуля называют областью целостности (примеры 1—7). Так же, как и в области целых чисел, не во всяком К. возможно деление одного элемента на другой, если же это возможно, то есть если всегда разрешимы уравнения ax = b и уа = b при а¹0, то К. называют телом (примеры 3—5, 10, 11). Ассоциативное коммутативное тело принято называть полем (примеры 3— 5) (см. Поле алгебраическое). Весьма важны для многих отделов алгебры К. многочленов с одним или несколькими переменными над произвольным полем и К. матриц над ассоциативными телами, определяемые аналогично К. примеров 7 и 9. Многие классы К. все чаще находят приложения и вне алгебры. Важнейшими из них являются: К. функций и К. операторов, сыгравшие большую роль в развитии функционального анализа; альтернативные тела, применяемые в проективной геометрии; так называемые дифференциальные К. и поля, отразившие интересную попытку применить теорию К. к дифференциальным уравнениям.

  При изучении К. большое значение имеют те или иные способы сличения друг с другом различных К. Одним из наиболее плодотворных является гомоморфное отображение (гомоморфизм), т. е. такое однозначное отображение R®R" кольца R на кольцо R", что из а ® a", b ®b" следует а + b ® a" +b" и ab ® a"b". Если это отображение также и взаимно однозначное, то оно называется изоморфизмом, а кольца R и R" изоморфными. Изоморфные К. обладают одинаковыми алгебраическими свойствами.

  Множество М элементов кольца R называют подкольцом, если М само является К. относительно операций, определенных в R. Подкольцо М называют левым (правым или двусторонним) идеалом кольца R, если для любых элементов т из М и r из R произведение rm (соответственно mr или как rm, так и mr) лежит в М. Элементы а и b кольца R называют сравнимыми по идеалу М, если а — b принадлежит М. Все К. разбивается на классы сравнимых элементов — классы вычетов по идеалу М. Если определить сложение и умножение классов вычетов по двустороннему идеалу М через сложение и умножение элементов этих классов, то сами классы вычетов образуют К. — фактор кольцо R/M кольца R по идеалу М. Имеет место теорема о гомоморфизме К.: если каждому элементу К. поставить в соответствие содержащий его класс, то получают гомоморфное отображение кольца R на факторкольцо RM; обратно, если R гомоморфно отображается на R", то множеством элементов из R, отображающихся в нуль кольца R", будет двусторонним идеалом в R, и R" изоморфно R/M.

  Среди различных типов К. легче других поддаются изучению и сравнительно чаще находят приложение так называемые алгебры: кольцо R называют алгеброй над полем Р, если для любых a из Р и r из R определено произведение ar также из R, причем (a + b) r = ar + br, a(r + s)= ar + as, (ab) r = a(br), a(rs) = (ar) s = r (as), er = r для любых a, b из Р и r, s из R, где e — единица поля Р. Если все элементы алгебры линейно выражаются через n линейно независимых элементов (см. Линейная зависимость), то R называют алгеброй конечного ранга n, или гиперкомплексной системой (см. Гиперкомплексные числа). Примерами алгебр могут служить комплексные числа (алгебра ранга 2 над полем действительных чисел), полное К. матриц с элементами из поля Р (которое является алгеброй ранга n2 над Р), К. примера 10 (алгебра ранга 4 над полем действительных чисел), К. примера 8 и др.

  Для целых чисел и К. многочленов справедлива теорема об однозначной разложимости элемента в произведение простых, т. с. далее не разложимых элементов. Эта теорема верна для любых К. главных идеалов, то есть областей целостности, в которых любой идеал состоит из кратных одного элемента. Частным случаем таких К. являются евклидовы К., то есть К., где любому элементу а ¹ 0 соответствует неотрицательное целое число n (a), причем n (ab) ³ n (a) и для любых а и b ¹ 0 существуют такие q и r, что а = bq +r и либо n (r)<n (b), либо r = 0. Таковы, например, К. многочленов и К. примеров 1 и 6. Для широкого класса К. верна теорема об однозначном разложении идеала в произведение простых идеалов, хотя для самих элементов она не выполняется. Основы теории разложения идеалов и абстрактных К. были заложены Э. Нетер (в 20-х гг. 20 в.).

  Одним из первых в России теорией К. занимался Е. И. Золотарев (70-е гг. 19 в.); его исследования относятся к числовым К., а именно — к теории разложения идеалов в них. В Советском Союзе теория К. разрабатывается в основном в трех центрах: Москве, Новосибирске и Кишиневе.

  Лит.: Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Энциклопедия элементарной математики, кн. 1, М. — Л., 1951; Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1—2, М. — Л.,1947; Джекобсон Н., Строение колец, пер. с англ., М., 1961; Ленг С., Алгебра, пер. с англ., М., 1968.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 16.06.2019 22:38:07

22:15 Названа главная опасность квартир-студий
21:47 Россия ответила на заявление США о многомиллионном контракте с Мадуро
21:37 Президент ПСЖ пригрозил выгнать звездных игроков из команды
21:16 Власти Пензы ввели сухой закон после массовой драки
20:25 Шарапова рассказала о травмированном плече
20:15 Жители села под Пензой нашли виновных в конфликте с цыганами
19:48 Инспектор ДПС покончил с собой во время дежурства
19:11 Брутальный отец стал носить мини-шорты в отместку дочери
18:03 Дуэль советских танков в Ливии попала на видео