|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Вписанные и описанные фигуры | Вписанные и описанные фигуры (далее В) в элементарной геометрии. Многоугольник называется вписанным в выпуклую кривую, а кривая — описанной около многоугольника, если все вершины многоугольника лежат на кривой (рис. 1). Многоугольник называется описанным вокруг кривой, а кривая — вписанной в многоугольник, если каждая сторона многоугольника или ее продолжение касается кривой. В качестве кривой чаще всего рассматривается окружность. Всякий треугольник имеет одну описанную и одну вписанную окружности (рис. 2). Выпуклый четырехугольник имеет описанную окружность тогда и только тогда, когда сумма противоположных углов составляет 180° (рис. 3). Для того чтобы четырехугольник имел вписанную окружность, необходимо и достаточно, чтобы сумма длин одной пары противолежащих сторон равнялась сумме длин другой пары (рис. 4). Многоугольник может быть вписан в окружность, если этим свойством обладают четырехугольники, образованные диагональю многоугольника и тремя сторонами, а также если перпендикуляры, проведенные через середины сторон, пересекаются в одной точке. Вписанная окружность существует в том и только в том случае, когда биссектрисы внутренних углов многоугольника пересекаются в одной точке. В проективной геометрии важную роль играют теоремы о шестиугольнике, вписанном в коническое сечение (см. Паскаля теорема) и описанном около него (см. Брианшона теорема).
В. и о. Ф. рассматриваются и в пространстве. В этом случае вместо многоугольника рассматривается многогранник, а вместо выпуклой линии — выпуклая поверхность, чаще всего сфера (рис. 5). Можно говорить также о конусе или цилиндре, вписанном в сферу, о сфере, вписанной в конус (рис. 6), и т.п.
Лит.: Перепелкин Д. И., Курс элементарной геометрии, ч. 1—2, М. — Л., 1948—49.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.11.2024 18:39:25
|
|
|
|
|
|
|
|
|
|