| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Сопряженные дифференциальные уравнения |  | Сопряженные дифференциальные уравнения (далее С) понятие теории дифференциальных уравнений. Уравнением, сопряженным с дифференциальным уравнением 
 
  , (1) 
 называется уравнение
 
 
  , (2) 
 Соотношение сопряженности взаимно. Для С имеет место тождество
 
 
  , 
 где y (у, z) — билинейная форма относительно у, z и их производных до (n - 1)-го порядка включительно. Знание k интегралов сопряженного уравнения позволяет понизить на k единиц порядок данного уравнения. Если
 
 y1, у2,... уn (3)
 
 — фундаментальная система решений уравнения (1), то фундаментальная система решений уравнения (2) дается формулами
 
 
    , 
 где D — определитель Вроньского (см. Вронскиан) системы (3). Если для уравнения (1) заданы краевые условия, то существуют сопряженные с ними краевые условия для уравнения (2) такие, что уравнения (1) и (2) с соответствующими краевыми условиями определяют сопряженные дифференциальные операторы (см. Сопряженные операторы). Понятие сопряженности обобщается также на системы дифференциальных уравнений и на уравнения с частными производными.
 
 
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 14:07:40 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |