Большая Советская Энциклопедия (цитаты)

Математическая школа

Математическая школа (далее М), одно из направлений в буржуазной политической экономии. Возникла во 2-й половине 19 века. Основатель М — Л. Вальрас, видные представители — В. Парето, У. Джевонс, Ф. Эджуорт, И. Фишер, Г. Кассель, К. Викселль. Из предшественников М наиболее известны А. Курно и Г. Госсен. Подход М к основным проблемам политической экономии, как правило, мало отличается от концепций, господствовавших в буржуазной экономической мысли 2-й половины 19 века и 1-й трети 20 века.

  Специфическая особенность теоретических построений М — ориентация на маржинализм. Активное использование предельных категорий (предельная полезность, предельная эффективность, предельная производительность), принципа убывания полезности и принципа редкости роднит М с австрийской школой.

  Однако место М в истории экономической науки определено тем, что она придает решающее значение математике как методу изучения экономических явлений. Именно этот принцип объединил порой сильно отличавшихся по своим экономическим взглядам ученых в рамках М

  Для М ценность математических моделей экономических явлений состоит не столько в том, что они позволяют лаконичным образом описывать эти явления, сколько в том, что с их помощью можно получить из высказанных предпосылок выводы, которые иным путем не могут быть получены. Представители М, и особенно Вальрас, видели в математике метод для исследования как частных, так и глобальных народно-хозяйственных явлений. Типичной является модель равновесия народного хозяйства Вальраса. В отличие от модели народного хозяйства послекейнсианского периода, эта модель основывается не на макроэкономических показателях типа национального дохода, численности занятых, валовых инвестиций, а на показателях, характеризующих поведение отдельных производителей и потребителей (так называемый микроэкономический подход). Каждый производитель характеризуется функцией предложения, а каждый потребитель — функцией спроса. В модели с помощью равновесных цен обеспечивается равенство спроса и предложения по каждому товару. Из возникшего равновесия система может быть выведена только с помощью внешних сил. Осуществленный Вальрасом, Джевонсом, Парето анализ условий равновесия рыночной экономики оказал большое влияние на буржуазных экономистов середины 20 века, занимавшихся проблемами построения математических моделей капиталистической экономики.

  Модели Вальраса и других представителей М далеки от того, чтобы адекватно описывать даже экономику капитализма периода свободной конкуренции. Они упрощают, а часто и искажают реальные условия функционирования капиталистической системы хозяйства. Достаточно указать на статичность этих моделей, на игнорирование циклического характера развития капиталистической экономики, классовой борьбы и т. д. Вместе с тем модели, разработанные М, сыграли и известную положительную роль, стимулируя исследования, приведшие к созданию в 50-е годы 20 века межотраслевой модели народного хозяйства на основе метода "выпуск — затраты", а также к получению интересных результатов в области ценообразования в условиях экономического равновесия (модели Д. Гейла, Дж. К. Эрроу, Г. Дебре и других).

  Возрастание престижа М в буржуазной экономической науке во 2-й половины 20 века в большой степени связано также с тем значением, которое приобрели экономико-математические модели в практике государственно-монополистического регулирования капиталистической экономики.

  Работы представителей М всегда привлекали внимание экономистов-марксистов. Глубокий критический анализ их осуществил еще в 20-е годы советский экономист И. Г. Блюмин. В связи с тем, что с 60-х годов в советской экономической науке резко возрастает сфера использования математических методов, М вновь становится объектом интенсивного критического анализа.

  Лит.: Блюмин И. Г., Критика буржуазной политической экономии, т. 1, М., 1962; Шляпентох В. Э., Эконометрика и проблемы экономического роста, М., 1966.

  В. Э. Шляпентох.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 22:05:00