Большая Советская Энциклопедия (цитаты)

Электронные приборы

Электронные приборы (далее Э) приборы для преобразования электромагнитной энергии одного вида в электромагнитную энергию другого вида, осуществляемого посредством взаимодействия электронов (движущихся в вакууме, газе или полупроводнике) с электромагнитными полями. К Э относятся электровакуумные приборы (кроме ламп накаливания) и полупроводниковые приборы.

  Протекающие в Э процессы чрезвычайно разнообразны. Так, в электронных лампах и вакуумных приборах СВЧ (клистронах, магнетронах, лампах бегущей волны и т. д.) электроны, испускаемые катодом, взаимодействуют с постоянным и переменным электрическими полями. В результате взаимодействия с постоянным полем кинетическая энергия электронов увеличивается; в результате взаимодействия с переменным полем постоянный электронный поток превращается в переменный и часть кинетической энергии электронов преобразуется в энергию электрических колебаний. В вакуумных индикаторах и электроннолучевых приборах электроны ускоряются постоянным электрическим полем и бомбардируют мишень (например, экран, покрытый люминофором); при взаимодействии электронов с мишенью часть их кинетической энергии преобразуется в электромагнитную энергию (например, световую). В вакуумных фотоэлектронных приборах (вакуумных фотоэлементах, фотоэлектронных умножителях и др.) электроны, эмитируемые фотокатодом под действием оптического излучения, ускоряются постоянным электрическим полем и направляются на анод. В результате энергия оптического излучения преобразуется в энергию электрического тока, текущего в анодной цепи такого Э В рентгеновских трубках энергия электронов, ускоренных на пути от катода к аноду (антикатоду), при ударе электронов об анод частично преобразуется в энергию рентгеновского излучения. В ионных приборах (газоразрядных приборах) электроны, ускоренные постоянным электрическим полем, сталкиваются с молекулами газа и либо ионизируют их, либо переводят в возбужденное состояние. Такие газоразрядные приборы, как ртутные вентили, газотроны, тиратроны, таситроны, по принципу преобразования энергии аналогичны электровакуумным диодам и триодам; основное отличие состоит в том, что в газоразрядных приборах ионы газа нейтрализуют пространственный заряд потока электронов и этим обеспечивают прохождение через прибор огромных токов (например, в вентилях - до тысяч а) при сравнительно малых анодных напряжениях (15- 20 в). В газоразрядных источниках света и индикаторах газоразрядных каждая возбужденная молекула газа при переходе в равновесное состояние излучает световую энергию. В люминесцентных лампах световую энергию излучают молекулы люминофора, возбужденные ультрафиолетовым излучением разряда. В квантовых газоразрядных приборах (газовых лазерах, квантовых стандартах частоты и др.) возбужденные молекулы газа, взаимодействуя с электромагнитными колебаниями, усиливают их при своем переходе в невозбужденное состояние.

  Преобразование энергии в полупроводниковых приборах основано на том, что в полупроводнике, как и в вакууме, можно создавать постоянные электрические поля и осуществлять управление движением носителей заряда. В основе работы полупроводниковых приборов лежат следующие электронные процессы и явления: эффект односторонней проводимости при протекании тока через запирающий слой электронно-дырочного перехода (р - n-перехода) или потенциального барьера на границе металл-полупроводник (см. Шотки диод); туннельный эффект; явление лавинного размножения носителей в сильных электрических полях; акусто-, оптико-, термоэлектрические эффекты в диэлектрических и полупроводниковых материалах и т. д. На использовании эффекта односторонней проводимости основана работа полупроводниковых диодов. В транзисторах для усиления электрических колебаний используют т. н. транзисторный эффект - управление током запертого перехода с помощью тока отпертого перехода. В Ганна диодах и лавинно-пролетных полупроводниковых диодах лавинное умножение в р - n-переходах, обусловленное ударной ионизацией носителями, используется для генерации электрических колебаний. В светоизлучающих диодах электрическая энергия преобразуется в энергию оптического излучения на основе явления инжекционной электролюминесценции.

  Э находят применение в радиотехнике, автоматике, связи, вычислительной технике, астрономии, физике, медицине и т. д, - практически во всех областях науки и техники. Мировая промышленность ежегодно выпускает (70-е гг.) свыше 10 млрд. Э различных наименований.

  Лит.: Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960; Кушманов И. В., Васильев Н. Н., Леонтъев А. Г., Э, М., 1973.

  В. Ф. Коваленко


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 29.03.2024 14:52:07