Большая Советская Энциклопедия (цитаты)

Электронная и ионная оптика

Электронная и ионная оптика (далее Э) наука о поведении пучков электронов и ионов в вакууме под воздействием электрических и полей. Т. к. изучение электронных пучков началось ранее, чем ионных, и первые используют гораздо шире, чем вторые, весьма распространен термин "электронная оптика". Э. и и. о. занимается главным образом вопросами формирования, фокусировки и отклонения пучков заряженных частиц, а также получения с их помощью изображений, которые можно визуализировать на люминесцирующих экранах или фотографических пленках. Такие изображения принято называть электроннооптическими и ионнооптическими изображениями. Развитие Э. и и. о. в значительной степени обусловлено потребностями электронной техники.

  Зарождение Э. и и. о. связано с созданием в конце 19 в. электроннолучевой трубки (ЭЛТ). В первой осциллографической ЭЛТ, изготовленной в 1897 К. Ф. Брауном, электронный пучок отклонялся полем. Отклонение с помощью электростатического поля осуществил в своих опытах по определению отношения заряда электрона к его массе Дж. Дж. Томсон, пропуская пучок через плоский конденсатор, помещенный внутри ЭЛТ. В 1899 немецкий физик И. Э. Вихерт применил для фокусировки электронного пучка в ЭЛТ катушку из изолированной проволоки, по которой протекал электрический ток. Однако лишь в 1926 немецкий ученый Х. Буш теоретически рассмотрел движение заряженных частиц в поле такой катушки и показал, что она пригодна для получения правильных электроннооптических изображений и, следовательно, является электронной линзой (ЭЛ). Последующая разработка электронных линз ( и электростатических) открыла путь к созданию электронного микроскопа, электроннооптического преобразователя и ряда др. приборов, в которых формируются правильные электроннооптические изображения объектов - либо испускающих электроны, либо тем или иным образом воздействующих на электронные пучки. Конструирование специализированных ЭЛТ для телевизионной и радиолокационной аппаратуры, для записи, хранения и воспроизведения информации и т. п. привело к дальнейшему развитию разделов Э. и и. о., связанных с управлением пучками заряженных частиц. Значительное влияние на развитие Э. и и. о. оказала разработка аппаратуры для анализа потоков электронов и ионов (бета-спектрометров, масс-спектрометров и других аналитических приборов). В Э. и и. о., как правило, не рассматриваются вопросы, возникающие в сверхвысоких частот технике, лишь изредка рассматриваются процессы в электронных лампах, ускорителях заряженных частиц и других приборах и устройствах, специфика которых отделяет их от основных направлений Э. и и. о.

  Для решения большинства задач Э. и и. о. достаточно рассматривать движение заряженных частиц в рамках классической механики, т. к. волновая природа частиц (см. Корпускулярно-волновой дуализм) в этих задачах практически не проявляется. В таком приближении Э. и и. о. носит название геометрической Э. и и. о., что обусловлено наличием глубокой аналогии между геометрической Э. и и. о. и геометрической оптикой световых лучей, которая выражается в том, что поведение пучков заряженных частиц в электрических и полях во многом подобно поведению пучков лучей света в неоднородных оптических средах. В основе указанной аналогии лежит более общая аналогия между классической механикой и световой геометрической оптикой, установленная У. Р. Гамильтоном, доказавшим в 1834, что общее уравнение механики (уравнение Гамильтона - Якоби) по форме подобно оптическому уравнению эйконала. Как и в световой геометрической оптике, в геометрической Э. и и. о. вводится понятие преломления показателя, при вычислении погрешностей изображения - аберраций, большая часть которых аналогична аберрациям оптических систем, - зачастую используется метод эйконала. Когда приближение геометрической Э. и и. о. недостаточно, например при исследовании разрешающей способности электронного микроскопа, привлекаются методы квантовой механики.

  В электроннооптических устройствах широко применяются электрические и поля, обладающие симметрией вращения относительно оптической оси системы. ЭЛ и электронные зеркала с такими полями называются осесимметричными. Электрические поля с симметрией вращения создаются электродами в виде цилиндров, чашечек, диафрагм с круглыми отверстиями и т. п. (рис. 2). Для получения осесимметричных полей используют электромагниты (иногда постоянные с полюсами в форме тел вращения или тороидальные катушки с намоткой из изолированной проволоки, по которой пропускается электрический ток (рис. 3). Осесимметричные линзы и зеркала создают правильные электроннооптические изображения, если заряженные частицы движутся достаточно близко к оси симметрии поля, а их начальные скорости мало отличаются друг от друга. Если эти условия не выполняются, погрешности изображения становятся весьма значительными. Когда предмет и изображение лежат за пределами поля, осесимметричные ЭЛ - всегда собирающие. В электростатических осесимметричных ЭЛ, как и в светооптических линзах со сферическими поверхностями, изображение может быть только прямым или перевернутым, в ЭЛ - оно дополнительно повернуто на некоторый угол. Электроннооптические свойства поля с симметрией вращения определяются положением его кардинальных точек, аналогичных кардинальным точкам осесимметричных светооптических изображающих систем: двух фокусов, двух главных точек и двух узловых точек. Построение изображения производится по правилам световой геометрической оптики. Электростатическим осесимметричным полям свойственны те же пять видов геометрических аберраций третьего порядка, что и светооптическим центрированным системам сферических поверхностей: сферическая аберрация, астигматизм, кривизна поля изображения, дисторсия и кома. В полях к ним добавляются еще три: т. н. анизотропные дисторсия, астигматизм и кома. Кроме того, существуют три вида аберраций (в электростатических полях - два), обусловленных некоторым неизбежным разбросом энергий поступающих в поле частиц. Вообще говоря, аберрации полей с симметрией вращения в сопоставимых условиях значительно превышают по величине аберрации светооптических центрированных систем, т. е. ЭЛ и электронные зеркала по качеству существенно уступают светооптическим. Вопрос о компенсации аберраций или их уменьшении является одним из основных в теоретических Э. и и. о.

  Существуют и другие типы ЭЛ и зеркал, поля которых обладают различными видами симметрии. Они формируют изображения точечных объектов в виде отрезков линий, однако иногда способны осуществлять и стигматическую фокусировку (точка в точку). Так называемые цилиндрические электростатические и линзы и зеркала создают линейные изображения точечных предметов. Поля в таких ЭЛ "двумерны" (их напряженности описываются функциями только двух декартовых координат) и симметричны относительно некоторой средней плоскости, вблизи которой движутся заряженные частицы. В ряде аналитических электровакуумных приборов высококачественная фокусировка необходима только в одном направлении. В этих случаях целесообразно применять так называемые трансаксиальные электростатические ЭЛ или трансаксиальные электронные зеркала, аберрации которых в средней плоскости очень малы (сравнимы с аберрациями светооптических линз). Для воздействия на пучки заряженных частиц с большими энергиями используют квадрупольные ЭЛ (электрические и Для отклонения пучков заряженных частиц используют электроннооптические устройства с электрическими или полями, направленными поперек пучка. Простейшим электрическим отклоняющим элементом является плоский конденсатор (рис. 4). В ЭЛТ с целью уменьшения отклоняющего напряжения применяют системы с электродами более сложной формы. поля, предназначенные для отклонения пучков, создаются электромагнитами (рис. 5) или проводниками, по которым течет ток.

  Очень разнообразны формы отклоняющих электрических и полей, применяемых в аналитических приборах, в которых используется свойство этих полей разделять (разрешать) заряженные частицы по энергии и массе. Широко используется также их свойство фокусировать пучки.

  Электрические поля обычно формируются различными конденсаторами: плоским, цилиндрическим (рис. 6), сферическим (рис. 7). Из полей часто применяются однородное поле (рис. 8) и секторное поле (рис. 9). Для улучшения качества фокусировки искривляют границы секторных полей, а также применяют неоднородные поля, напряженность которых меняется по определенному закону.

  Перечисленные отклоняющие электрические и устройства, иногда называются электронными (ионными) призмами, отличаются от светооптических призм тем, что они не только отклоняют, но и фокусируют пучки заряженных частиц. Фокусировка приводит к тому, что попадающие в поля таких устройств параллельные пучки после отклонения перестают быть параллельными. Между тем для создания высококачественных аналитических электронных и ионных приборов по точной аналогии со светооптическим призменным спектрометром необходимы электронные (ионные) призмы, которые подобно световым призмам сохраняют параллельность пучков. В качестве таких электронных призм применяют телескопические системы электронных линз. Добавив к электронной призме две ЭЛ, одну так называемую коллиматорную на входе, другую - фокусирующую на выходе, можно получить аналитический прибор, в котором сочетаются высокая разрешающая способность и большая электроннооптическая светосила.

  Лит.: Арцимович Л. А., Лукьянов С. Ю., Движение заряженных частиц в электрических и полях, М., 1972; Бонштедт Б. Э., Маркович М. Г., Фокусировка и отклонение пучков в электроннолучевых приборах, М., 1967; Брюхе Е., Шерцер О., Геометрическая электронная оптика, пер. с нем., Л., 1943; Глазер В., Основы электронной оптики, пер. с нем., М., 1957; Гринберг Г. А., Избранные вопросы математической теории электрических и явлений, М. - Л., 1948; Зинченко Н, С., Курс лекций по электронной оптике, 2 изд., Хар., 1961; Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968; Страшкевич А. М., Электронная оптика электростатических систем, М. - Л., 1966; Явор С. Я., Фокусировка заряженных частиц квадрупольными линзами, М., 1968.

  В. М. Кельман, И. В. Родникова.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.12.2024 17:26:30