|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Управляемый термоядерный синтез | Управляемый термоядерный синтез (далее У) процесс слияния легких ядер, происходящий с выделением энергии при высоких температурах в регулируемых, управляемых условиях. Скорости протекания термоядерных реакций малы из-за кулоновского отталкивания (см. Кулона закон) положительно заряженных ядер. Поэтому процесс синтеза идет с заметной интенсивностью только между легкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. В природных условиях термоядерные реакции между ядрами (протонами) протекают в недрах звезд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание в звездах идет с малой скоростью, но гигантские размеры и плотности звезд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет (подробнее см. Термоядерные реакции). С несравненно большей скоростью идут реакции между тяжелыми изотопами (дейтерием 2 и тритием 3) с образованием сильно связанных ядер
.
Именно названные реакции представляют наибольший интерес для проблемы У В особенности привлекательна вторая реакция, сопровождающаяся большим энерговыделением и протекающая со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития. С этой целью рабочая зона рассматриваемой системы может быть окружена слоем легкого изотопа лития, в котором будет идти процесс воспроизводства
6 + n ® 3 + 4.
Вероятность (эффективное поперечное сечение) термоядерных реакций быстро возрастает с температурой, но даже в оптимальных условиях остается несравненно меньше эффективного сечения столкновений атомных. По этой причине реакции синтеза должны происходить в полностью ионизованной плазме, нагретой до высокой температуры, где процессы ионизации и возбуждения отсутствуют и дейтон-дейтонные или дейтон-тритонные столкновения рано или поздно завершаются ядерным синтезом.
Удельная мощность термоядерного реактора находится путем умножения числа ядерных реакций, происходящих ежесекундно в единице объема рабочей зоны реактора, на энергию, выделяющуюся при каждом акте реакции.
Критерий Лоусона. Применение законов сохранения энергии и числа частиц позволяет выяснить некоторые предъявляемые к реактору синтеза общие требования, не зависящие от каких-либо особенностей технологического или конструктивного характера рассматриваемой системы. На рис. 1 изображена принципиальная схема работы реактора. Установка произвольной конструкции содержит чистую плазму с плотностью п при температуре Т. В реактор вводится топливо, например равнокомпонентная смесь дейтерия и трития, уже нагретая до необходимой температуры. Внутри реактора инжектируемые частицы время от времени сталкиваются между собой и происходит их ядерное взаимодействие. Это полезный процесс; одновременно, однако, из реактора уходит энергия за счет электромагнитного излучения плазмы и из рабочей зоны ускользает некоторая доля "горячих" (обладающих высокой энергией) частиц, которые не успели испытать ядерные взаимодействия. Пусть t – среднее время удержания частиц в реакторе; смысл величины t таков: за время в 1 сек из 1 см3 плазмы в среднем уходит n/t частиц каждого знака. В стационарном режиме в реактор надо ежесекундно инжектировать такое же число частиц (в расчете на единицу объема). Для покрытия энергетических потерь подводимое топливо должно подаваться в зону реакции с энергией, превышающей энергию потока ускользающих частиц. Эта дополнительная энергия должна компенсироваться за счет энергии синтеза, выделяющейся в зоне реакции, а также за счет частичной рекуперации в стенках и оболочке реактора электромагнитного излучения и корпускулярных потоков. Примем для простоты, что коэффициент преобразования в электрическую энергию продуктов ядерных реакций, электромагнитного излучения и частиц с тепловой энергией одинаков и равен h. Величину (часто называют коэффициент полезного действия (кпд). В условиях стационарной работы системы и при нулевой полезной мощности уравнение баланса энергии в реакторе имеет вид:
h(o + r + t) = r + t, (1)
где o – мощность ядерного энерговыделения, r – мощность потока излучения и t – энергетическая мощность потока ускользающих частиц. Когда левая часть написанного равенства делается больше правой, реактор перестает расходовать энергию и начинает работать как термоядерная электростанция. При написании равенства (1) предполагается, что вся рекуперированная энергия без потерь возвращается в реактор через инжектор вместе с потоком подводимого нагретого топлива. Величины Ро, r и t известным образом зависят от температуры плазмы, и из уравнения баланса легко вычисляется произведение
nt = f (T), (2)
где f (T) для заданного значения кпд h и выбранного сорта топлива есть вполне определенная функция температуры. На рис. 2 приведены графики f (T) для двух значений h и для обеих ядерных реакций. Если величины h, достигнутые в данной установке, расположатся выше кривой f (T), это будет означать, что система работает как генератор энергии. При h = 1/3 энергетически выгодная работа реактора в оптимальном режиме (минимум на кривых рис. 2) отвечает условию ("критерии Лоусона"):
реакции (d, d): nt >1015см-3·сек;
Т ~ 109 К; (3)
реакции (d, t): nt > 0,5·1015см-3·сек,
Т ~ 2·108 К.
Т. о., даже в оптимальных условиях, для наиболее интересного случая – реактора, работающего на равнокомпонентной смеси дейтерия и трития, и при весьма оптимистических предположениях относительно величины (необходимо достижение температур ~ 2·108 К. При этом для плазмы с плотностью ~ 1014см-3 должны быть обеспечены времена удержания порядка секунд. Конечно, энергетически выгодная работа реактора может происходить и при более низких температурах, но за это придется "расплачиваться" увеличенными значениями nt.
Итак, сооружение реактора предполагает: 1) получение плазмы, нагретой до температур в сотни миллионов градусов; 2) сохранение плазменной конфигурации в течение времени, необходимого для протекания ядерных реакций. Исследования по У ведутся в двух направлениях – по разработке квазистационарных систем, с одной стороны, и устройств, предельно быстродействующих, с другой.
У с термоизоляцией. Рассмотрим сначала первый вариант. Энергетический выход на уровне 105 квт/м3 достигается для (d, t) реакций при плотности плазмы ~ 1015см-3 и температуре ~ 108. Это означает, что размеры реактора на 106–107 квт (таковы типичные мощности современных больших электростанций) должны быть в пределах 10–100 м3, что вполне приемлемо. Основной вопрос состоит в том, каким способом удерживать горячую плазму в зоне реакции. Диффузионные потоки частиц и тепла при указанных значениях n и Т оказываются гигантскими и любые материальные стенки непригодными. Основополагающая идея, высказанная в 1950 в Советском Союзе и США, состоит в использовании принципа термоизоляции плазмы. Заряженные частицы, образующие плазму, находясь в поле, не могут свободно перемещаться перпендикулярно к силовым линиям поля. В результате коэффициенты диффузии и теплопроводности поперек поля, в случае устойчивой плазмы, очень быстро убывают с возрастанием напряженности поля и, например, при полях ~105 гс уменьшаются на 14–15 порядков величины против своего "незамагниченного" значения для плазмы с указанной выше плотностью и температурой. Т. о., применение достаточно сильного поля в принципе открывает дорогу для проектирования реактора синтеза.
Исследования в области У с термоизоляцией делятся на три основных направления: 1) открытые (или зеркальные) ловушки; 2) замкнутые системы; 3) установки импульсного действия.
В открытых ловушках уход частиц из рабочей зоны поперек силовых линий на стенки установки затруднен; он происходит либо в ходе процесса "замагниченной" диффузии (т. е. очень медленно), либо путем перезарядки на молекулах остаточного газа (см. Перезарядка ионов). Уход плазмы вдоль силовых линий также замедлен областями усиленного поля (т. н. "магнитными зеркалами" или "пробками"), размещенными на открытых концах ловушки. Заполнение ловушек плазмой обычно производится путем инжекции плазменных сгустков или отдельных частиц, обладающих большой энергией. Дополнительный нагрев плазмы может быть осуществлен с помощью адиабатического сжатия в нарастающем поле (подробнее см. Магнитные ловушки).
В системах замкнутого типа (токамак, стелларатор) уход частиц на стенки тороидальной установки поперек продольного поля также затруднен и происходит за счет замагниченной диффузии и перезарядки. Нагревание плазменного шнура в токамаке на начальных стадиях процесса осуществляется протекающим по нему кольцевым током. Однако по мере повышения температуры джоулев нагрев становится все менее эффективным, т.к. сопротивление плазмы быстро падает с ростом температуры. Для нагревания плазмы свыше 107 К применяются методы нагрева высокочастотным электромагнитным полем и ввод энергии с помощью потоков быстрых нейтральных частиц.
В установках импульсного действия (Z-пинч и Q-пинч) нагревание плазмы и ее удержание осуществляются сильными кратковременными токами, протекающими через плазму. При одновременном нарастании тока и давления плазма отжимается от стенок сосуда, чем обеспечивается ее термоизоляция. Повышение температуры происходит за счет джоулева нагрева, адиабатического сжатия плазменного шнура и, по-видимому, в результате турбулентных процессов при развитии неустойчивости плазмы (подробнее см. Пинч-эффект).
Самостоятельное направление образуют исследования горячей плазмы в высокочастотных (ВЧ) полях. Как показали опыты П. Л. Капицы, в и при достаточно высоком давлении удается получить в ВЧ полях свободно парящий плазменный шнур с электронной температурой ~105 К. Система допускает замыкание шнура в кольцо и наложение дополнительного продольного поля.
Успешная работа любой из перечисленных установок возможна только при условии, что исходная плазменная структура оказывается макроскопически устойчивой, сохраняя заданную форму в течение всего времени, необходимого для протекания реакции. Кроме того, в плазме должны быть подавлены микроскопические неустойчивости, при возникновении и развитии которых распределение частиц по энергиям перестает быть равновесным и потоки частиц и тепла поперек силовых линий резко возрастают по сравнению с их теоретическими значениями. Именно в направлении стабилизации плазменных конфигураций развивались основные исследования систем начиная с 1950, и эта работа все еще не может считаться полностью завершенной.
Сверхбыстродействующие системы У с инерциальным удержанием. Трудности, связанные с удержанием плазмы, можно в принципе обойти, если сжигать ядерное горючее за чрезвычайно малые времена, когда нагретое вещество не успевает разлететься из зоны реакции. Согласно критерию Лоусона, полезная энергия при таком способе сжигания может быть получена лишь при очень высокой плотности рабочего вещества. Чтобы избежать ситуации термоядерного взрыва большой мощности, нужно использовать очень малые порции горючего, исходное термоядерное топливо должно иметь вид небольших крупинок (диаметром 1–2 мм), приготовленных из смеси дейтерия и трития, впрыскиваемых в реактор перед каждым его рабочим тактом. Главная проблема здесь заключается в подведении необходимой энергии для разогрева крупинки горючего. В настоящая время (1976) решение этой проблемы возлагается на применение лазерных лучей или интенсивных электронных пучков. Исследования в области У с применением лазерного нагрева были начаты в 1964; использование электронных пучков находится на более ранней стадии изучения – здесь выполнены пока сравнительно немногочисленные эксперименты.
Оценки показывают, что выражение для энергии , которую необходимо подводить к установке для обеспечения работы реактора, имеет вид:
дж
Здесь h – выражение общего вида для кпд устройства и a – коэффициент сжатия мишени. Как показывает написанное равенство, даже при самых оптимистических допущениях относительно возможного значения h величина при a = 1 получается несоразмерно большой. Поэтому только в сочетании с резким увеличением плотности мишени (примерно в 104 раз) по сравнению с исходной плотностью твердой (d, t) мишени можно подойти к приемлемым значениям . Быстрое нагревание мишени сопровождается испарением ее поверхностных слоев и реактивным сжатием внутренних зон. Если подводимая мощность определенным образом программирована во времени, то, как показывают вычисления, можно рассчитывать на достижение указанных коэффициентов сжатия. Другая возможность состоит в программировании радиального распределения плотности мишени. В обоих случаях необходимая энергия снижается до 106 дж, что лежит в пределах технической осуществимости, учитывая стремительный прогресс лазерных устройств.
Трудности и перспективы. Исследования в области У сталкиваются с большими трудностями как чисто физического, так и технического характера. К первым относится уже упомянутая проблема устойчивости горячей плазмы, помещенной в ловушку. Правда, применение сильных полей специальной конфигурации подавляет потоки частиц, покидающих зону реакции, и позволяет получить в ряде случаев достаточно устойчивые плазменные образования. Электромагнитное излучение при используемых значениях n и Т плазмы и возможных размерах реактора свободно покидает плазму, но для чисто плазмы эти энергетические потери определяются только тормозным излучением электронов и в случая (d, t) реакций перекрываются ядерным энерговыделением уже при температурах выше 4·107 К.
Вторая фундаментальная трудность связана с проблемой примесей. Даже малая добавка чужеродных с большим Z, которые при рассматриваемых температурах находятся в сильно ионизованном состоянии, приводит к резкому увеличению интенсивности сплошного спектра, к появлению линейчатого спектра и возрастанию энергетических потерь выше допустимого уровня. Требуются чрезвычайные усилия (непрерывное совершенствование вакуумных установок, использование тугоплавких и труднораспыляемых металлов в качестве материала диафрагм, применение специальных устройств для улавливания чужеродных и т.д.), чтобы содержание примесей в плазме оставалось ниже допустимого уровня. Точнее – "летальная" концентрация, исключающая возможность протекания термоядерных реакций, например для примеси или составляет десятые доли процента.
На рис. 3 на диаграмме (nt, Т) указаны параметры, достигнутые на различных установках к середине 1976. Ближе всего к области, где оказывается удовлетворенным критерий Лоусона и может протекать самоподдерживающаяся термоядерная реакция, располагаются установки типа токамак и системы с лазерным нагревом. Было бы, однако, ошибочным на основании имеющихся данных делать категорические заключения о типе того устройства, которое будет положено в основу термоядерного реактора будущего. Слишком быстрыми темпами происходит развитие данной области технической физики, и многие оценки могут измениться на протяжении ближайшего десятилетия.
Огромное значение, которое придается исследованиям в области У, объясняется рядом причин. Нарастающее загрязнение окружающей среды настоятельно требует перевода промышленного производства планеты на замкнутый цикл, когда возникает минимум отходов. Но подобная реконструкция промышленности неизбежно связана с резким возрастанием энергопотребления. Между тем ресурсы минерального топлива ограничены и при сохранении существующих темпов развития энергетики будут исчерпаны на протяжении ближайших десятилетий (нефть, горючие газы) или столетий ( Конечно, наилучшим вариантом было бы использование солнечной энергии, но низкая плотность мощности падающего излучения сильно затрудняет радикальное решение этой проблемы. Переход энергетики в глобальном масштабе на ядерные реакторы деления ставит сложные проблемы захоронения огромных радиоактивных отходов (альтернатива: выброс радиоактивных отходов в космос). По имеющимся оценкам, радиоактивная опасность установок на У должна оказаться на три порядка величины ниже, чем у реакторов деления. Если говорить о далеких прогнозах, то оптимум следует искать в сочетании солнечной энергетики и У
Лит.: Тамм И. Е., Теория термоядерного реактора, ч. 1, в сборнике: Физика плазмы и проблема управляемых термоядерных реакций, т. 1, М., 1958; А. Д., Теория термоядерного реактора, ч. 2, там же; Арцимович Л. А., Управляемые термоядерные реакции, М., 1963; Капица П. Л., Свободный плазменный шнур в высокочастотном поле при высоком давлении, "Журнал экспериментальной и теоретической физики", 1969, т. 57, в. 6(12); его же, Термоядерный реактор со свободно парящим в высокочастотном поле плазменным шнуром, там же, 1970, т. 58, в. 2; Роуз Д., У. (Результаты и общие перспективы), "Успехи физических наук", 1972, т. 107, в. 1, с. 99; Лукьянов С. Ю., Горячая плазма и управляемый ядерный синтез, М., 1975; Лазеры и термоядерная проблема, под ред. Б. Б. Кадомцева, М., 1974; Ribe . L., Fusion reactor systems, "Reviews of Modern Physics", 1975, v. 47, №1; Furth . ., Tokamak Research, "Nuclear Fusion", 1975, v. 15, № 3; Ashby D. Е., Laser fusion, "Journal of the British Nuclear Energy Society", 1975, № 4.
С. Ю. Лукьянов.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.12.2024 22:24:44
|
|
|
|
|
|
|
|
|
|