Большая Советская Энциклопедия (цитаты)

Теплоэлектроцентраль

Теплоэлектроцентраль (далее Т) (ТЭЦ), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (в СССР — ГРЭС) и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и поселков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населенных мест.

  Исходный источник энергии на ТЭЦ — органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых ТЭЦ). Преимущественное распространение имеют (1976) паротурбинные ТЭЦ на органическом топливе (рис. 1), являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа — для снабжения теплом промышленных предприятий, и отопительного типа — для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передается на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных — на расстояние до 20—30 км (в виде тепла горячей воды).

  Основное оборудование паротурбинных ТЭЦ — турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят паровая турбина и синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7—1,5 Мн/м2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7— 1,5 Мн/м2 (для промышленных потребителей) и 0,05—0,25 Мн/м2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05—0,25 Мн/м2.

  Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на все время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

  У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдается в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по "тепловому" графику, то есть с минимальным "вентиляционным" пропуском пара в конденсатор. В СССР разработаны и строятся ТТ с конденсацией и отбором пара, в которых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по "электрическому" графику, с необходимой, полной или почти полной электрической мощностью.

  Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицируются также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт, так и самых крупных в мире ТТ на 250 Мвт.

  Давление свежего пара на ТЭЦ принято в СССР равным ~ 13—14 Мн/м2 (преимущественно) и ~ 24—25 Мн/м2 (на наиболее крупных теплофикационных энергоблоках — мощностью 250 Мвт). На ТЭЦ с давлением пара 13—14 Мн/м2, в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не дает столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.

  Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40—50%) в периоды повышенной нагрузки подается потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5—0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10—20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2). При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

  На ТЭЦ используют твердое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населенным местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твердыми выбросами топливо — мазут и газ. Для защиты воздушного бассейна от загрязнения твердыми частицами используют (как и на ГРЭС) золоуловители (см. Газов очистка), для рассеивания в атмосфере твердых частиц, окислов серы и сооружают дымовые трубы высотой до 200—250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями — градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

  На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счет тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.

  Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100—200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла — 108 Гдж, а протяженность тепловых сетей — 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций ~ 220 и тепловых электростанций ~ 180 Гвт). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квт×ч, отпуск тепла — 4×109 Гдж; мощность отдельных новых ТЭЦ — 1,5—1,6 Гвт при часовом отпуске тепла до (1,6—2,0)×104 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла — 150—160 квт×ч. Удельный расход условного топлива на производство 1 квт×ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС — 370 г); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт×ч (на лучших ГРЭС — около 300 г/квт×ч). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (~ 11% всего топлива, идущего на производство электроэнергии).

  ТЭЦ — основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ — одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

  Лит.: Соколов Е. Я., Теплофикация и тепловые сети, М., 1975; Рыжкин В. Я., Тепловые электрические станции, М., 1976.

  В. Я. Рыжкин.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 21:22:45