Большая Советская Энциклопедия (цитаты)

Теплопроводности уравнение

Теплопроводности уравнение (далее Т) дифференциальное уравнение с частными производными параболического типа, описывающее процесс распространения теплоты в сплошной среде (газе, жидкости или твердом теле); основное уравнение математической теории теплопроводности. Т выражает тепловой баланс для малого элемента объема среды с учетом поступления теплоты от источников и тепловых потерь через поверхность элементарного объема вследствие теплопроводности. Для изотропной неоднородной среды Т имеет вид:

  ,

где r — плотность среды; cv теплоемкость среды при постоянном объеме; t — время; х, у, z — координаты; Т = Т (х, у, z, t) — температура, которая вычисляется при помощи Т; l — коэффициент теплопроводности; = (x, y, z, t) — заданная плотность тепловых источников. Величины r, v, l зависят от координат и, вообще говоря, от температуры. Для анизотропной среды Т вместо l содержит тензор теплопроводности lir, где i, k = 1, 2, 3.

  В случае изотропной однородной среды Т принимает вид:

  ,

где DTЛапласа оператор, a2 = l/(rcv) — коэффициент температуропроводности; f = /(rcv). В стационарном состоянии, когда температура не меняется со временем, Т переходит в Пуассона уравнение DТ = f/a2 = /l или, при отсутствии источников теплоты, в Лапласа уравнение DТ = 0. Основными задачами для Т является Коши задача и смешанная краевая задача (см. Краевые задачи).

  Первые исследования Т принадлежат Ж. Фурье (1822) и С. Пуассону (1835). Важные результаты в исследовании Т были получены И. Г. Петровским, А. Н. Тихоновым, С. Л. Соболевым.

  Лит.: Карслоу Г. С., Теория теплопроводности, пер. с англ., М.— Л., 1947: Владимиров В. С., Уравнения математической физики, М., 1967; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966.

  Д. Н. Зубарев.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 17:54:34