Большая Советская Энциклопедия (цитаты)

Структура (матем.)

Структура (далее С) решетка (математическая); важное алгебраическое понятие. С (матем.) называется непустое множество , для элементов которого определены две операции — объединение и пересечение, обозначаемые соответственно значками È и Ç (т. е. каждой паре элементов а и b из однозначно сопоставлен элемент a È b из — их объединение и элемент а Ç b из — их пересечение), причем эти операции удовлетворяют следующим условиям (аксиомам С (матем.)):

  1. Ассоциативность == (a Èb) È с, = a È(b Èс):

  (a Ç b) Ç с= а Ç (b Ç с);

  . Коммутативность a È b = b Èа;

  a Ç b) =b Çа,

  . Абсорбция (а È b) Ç а= а.

  (a Ç b) È а== а.

  Примеры С (матем.): 1) множество целых положительных чисел с операциями взятия наибольшего общего делителя и наименьшего общего кратного; 2) множество всех подмножеств произвольного множества с операциями взятия теоретико-множественных объединения и пересечения подмножеств; 3) множество действительных чисел с операциями взятия большего и меньшего числа из двух данных чисел.

  Подробно изучены различные специальные типы С (матем.), т. е. С (матем.), на которые наложены дополнительные условия (например, дистрибутивные С (матем.), модулярные, или дедекиндовы, С (матем.), С (матем.) с дополнениями). Весьма важным частным случаем С (матем.) являются булевы алгебры, т. е. дистрибутивные С (матем.) с единицей и нулем, обладающие дополнениями к каждому элементу. Булевы алгебры имеют большое значение для математической логики и теории вероятностей. Другие типы С (матем.) находят применение в теории множеств, топологии, функциональном анализе.

  В С (матем.) можно ввести частичное упорядочение (см. Упорядоченные и частично упорядоченные множества) элементов, естественным образом связанное с операциями в С (матем.); этим устанавливается равносильность теории С (матем.) и теории частично упорядоченных множеств.

  Появление понятия С (матем.) относится к середине 19 в.; наиболее полно оно было определено в работах Р. Дедекинда.

 

  Лит.: Биркгоф Г., Теория структур, пер. с англ., М., 1952; Скорняков Л. А., Элементы теории структур, М., 1970; Сикорский Р., Булевы алгебры, пер. с англ., М., 1969; Владимиров Д. А., Булевы алгебры, М., 1969.

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 23.12.2024 01:37:55