Большая Советская Энциклопедия (цитаты)

СССР. Технические науки

  Технические науки (далее С)

  Авиационная наука и техника

  В дореволюционной России был построен ряд самолетов оригинальной конструкции. Свои самолеты создали (1909—1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4-моторный самолет-гигант "Русский витязь" И. И. Сикорского (1913). Опыт применения самолетов в 1-й мировой войне 1914—18 продемонстрировал потенциальные возможности авиации и способствовал бурному ее развитию. Наряду с использованием иностранных самолетов (главным образом французских и английских) в России применялись и самолеты отечественных конструкций. В 1913—18 Сикорский разработал несколько вариантов тяжелых 4-моторных самолетов "Илья Муромец" (выпускались серийно). Малые производственные мощности полукустарных авиазаводов, необходимость покупать самолеты за границей, отсутствие собственного моторостроения сказывались на общем состоянии авиации в России.

  В начале 20 в. проводились теоретические исследования и экспериментальные работы в области аэродинамики и прочности самолета. Основополагающие труды Н. Е. Жуковского оказали значительное влияние на развитие авиационной науки (им выведена формула для определения подъемной силы, создана теория винта и т. д.). С. А. Чаплыгин заложил основы аэродинамики больших скоростей, развил теорию крыла. Их труды, а также работы их учеников (А. Н. Туполева, Б. Н. Юрьева, В. П. Ветчинкина, К. А. Ушакова, Г. М. Мусинянца, Г. Х. Сабинина) позволили начать конструирование самолетов на научной основе.

  В первые годы после победы Октябрьской революции 1917 на авиационных заводах налаживалось производство самолетов по трофейным образцам, одновременно приобретались лицензии на постройку самолетов иностранных марок. Коммунистическая партия и Советское правительство уделяли большое внимание развитию авиации. В Народном комиссариате по военным и морским делам была создана Коллегия воздушного флота, при которой в апреле 1918 по указанию В. И. Ленина организован Отдел по применению авиации в народном хозяйстве; в мае создано Главное управление рабоче-крестьянского Красного воздушного флота, а в июне СНК издал декрет о национализации авиационных предприятий. В том же году в Москве основан Центральный аэрогидродинамический институт (ЦАГИ), который возглавил Жуковский; ЦАГИ стал научной базой для строительства самолетов. В 1919 создан Московский авиационный техникум, преобразованный в 1922 в военно-воздушную инженерную академию им. Н. Е. Жуковского. В феврале 1923 СТО при СНК СССР принял постановление "О возложении технического надзора за воздушными линиями на Главное управление воздушного флота и об организации Совета по гражданской авиации". Это постановление положило начало планомерному строительству социалистического Гражданского воздушного флота. На механическом факультете Московского высшего технического училища (МВТУ) было создано аэромеханическое отделение (1925), преобразованное последовательно в аэромеханический факультет, Высшее аэромеханическое училище, а затем в Московский авиационный институт (МАИ) им. С. Орджоникидзе (1930). В 20-х гг. были организованы первые КБ по самолетостроению: Туполева (в ЦАГИ), Н. Н. Поликарпова и Григоровича (при заводе "Дукс"). Первыми советскими самолетами были АНТ-1, И-1 (1923), АК-1 "Латышский стрелок" (1924).

  Конструкция самолетов была деревянная, с полотняной обшивкой крыльев и оперения. Переход с дерева на металл явился важным этапом в развитии авиации. Была создана специальная комиссия по металлическому самолетостроению (Туполев, И. И. Сидорин, В. М. Петляков, А. И. Путилов, И. И. Погосский и др.). Несмотря на трудности становления в условиях 20-х гг. цельнометаллических самолетостроения, были созданы первый цельнометаллический самолет ЛНТ-2 (1924) и первый серийный самолет из нового материала — кольчугалюминия АНТ-З (1925).

  Создание авиационной промышленности явилось одной из главных задач 1-го пятилетнего плана (1929—32). Для развертывания научно-исследовательских работ из ЦАГИ были выделены: отдел авиационных материалов, преобразованный затем во Всесоюзный институт авиационных материалов (ВИАМ); винтомоторный отдел (после слияния с авиационным отделом Научно-исследовательского автомобильного и автомоторного института стал Центральным институтом авиационной моторостроения — ЦИАМ). Наряду с крупными КБ Туполева и Поликарпова имелись небольшие КБ К. А. Григоровича, Путилова, А. С. Яковлева, В. Б. Шаврова, Г. М. Бериева и др. Советские летчики на самолетах отечеств. конструкций совершили перелеты, прославившие Советский Союз (В. П. Чкалов, М. М. Громов, В. К. Коккинаки, М. В. Водопьянов, В. С. Гризодубова и др.).

  В 30-х гг. в самолетостроении произошли важные качественные изменения. Существенно улучшились летные данные, решены проблемы флаттера и выхода из штопора; создание Поликарповым самолета И-16 положило начало распространению в авиации истребителей монопланной схемы. Стали применяться убирающиеся в полете шасси, герметичная кабина, турбокомпрессор для повышения высотности, механизация крыла, усовершенствованная винтомоторная установка, пушка, стреляющая через винт, потайная клепка, новые высокопрочные материалы и т. д. Конструкторы ЦАГИ продолжали начатые в 1925—26 работы по созданию вертолетов (ЦАГИ 1-ЭА). Было построено несколько опытных аппаратов одновинтовой схемы под общим руководством Юрьева, а затем И. П. Братухина ("Омега" и др.); наметился путь дальнейшего прогресса и усовершенствования вертолетов и создания машин, пригодных к практической эксплуатации.

  В 1939 ЦК ВКП(б) и правительство приняли постановление "О реконструкции существующих и строительстве новых самолетных заводов"; был организован Народный комиссариат авиационной промышленности. Конструирование самолетов поручили КБ А. А. Архангельского, С. В. Ильюшина, С. А. Лавочкина, Ар. И. Микояна, Петлякова, П. О. Сухого. В результате теоретических и экспериментальных исследований (в аэродинамических трубах и других установках) были определены более совершенные формы многих элементов самолетов, обеспечивающие малое лобовое сопротивление, хорошие пилотажные и взлетно-посадочные качества; построены истребители ЛаГГ-3, МиГ-3, Як-1, бомбардировщики Пе-2, Пе-8, Су-2, Ил-4, С Б, штурмовик Ил-2 с высокими летно-техническими характеристиками.

  В конце 30-х гг. при крупных моторных заводах были созданы КБ (ставшие позднее самостоятельными опытными организациями), которые возглавили А. А. Микулин, В. Я. Климов, С. К. Туманский, А. Д. Швецов, В. А. Добрынин и др. Эти коллективы сосредоточили усилия на разработке и доводке новых конструкций авиационных моторов, а ЦИАМ обеспечивал научно-техническая помощь в их проектировании. К началу Великой Отечественной войны 1941—45 скорость истребителей достигла 600—650 км/ч, потолок — 11—12 км; скорость бомбардировщиков 550 км/ч, дальность полета 3—4 тыс. км, бомбовая нагрузка 4 т.

  В годы войны, несмотря на трудности, возникшие вследствие эвакуации, авиационная промышленность успешно снабжала фронт самолетами. Появились легкие, маневренные, хорошо вооруженные истребители, штурмовики и бомбардировщики (Як-3, Ла-5, Ил-6, Ил-8, Пе-3, Ту-2 и др.). При разработке конструкций новых самолетов учитывалась потребность их серийного производства и возможность последующих модификаций, исходя из требований военной обстановки и условий эксплуатации. Обеспечивая нужды фронта, авиационная промышленность только в 1943, например, дала армии 35 тыс. боевых самолетов.

  После войны в военной и гражданской авиации наметился переход от поршневых двигателей к реактивным. В СССР разработка воздушно-реактивных двигателей (ВРД) была начата еще в конце 30-х гг. (Б. С. Стечкин создал теорию ВРД). В 1943—44 А. М. Люлька разработал проект первого советского турбореактивного двигателя (ТРД). Проводились эксперименты с применением жидкостного ракетного двигателя (ЖРД) — полеты ракетоплана РП-318 в 1940 (С. П. Королев) и самолета БИ-1 (А. Я. Березняк и А. М. Исаев) в 1942. В 1945 начались полеты самолетов И-250 (ОКБ Микояна) и Су-5 с мотокомпрессорным двигателем. Но эти два направления не получили дальнейшего развития из-за большого удельного расхода топлива в ЖРД и из-за ограниченных возможностей мотокомпрессорных двигателей. Применение ТРД обеспечило быстрый прогресс авиации. Созданием самолетов МиГ-9 и Як-15 (1946) было положено начало практическому применению реактивных двигателей в советской авиации. С 1947 началось серийное производство реактивных истребителей МиГ-15.

  Одновременно велись работы по снижению веса конструкции и улучшению аэродинамического качества, снижению потерь на охлаждение и т. д. Создание стреловидного крыла — важный этап в развитии реактивной авиации. Большое значение для развития авиационной науки имело получение в аэродинамической трубе с перфорированными стенками рабочей части околозвуковой скорости потока с непрерывным переходом через скорость звука (ЦАГИ, 1947). Особенно важными для практики были результаты исследований аэродинамики стреловидных крыльев и крыльев малого удлинения, а также устойчивости и управляемости самолетов с крыльями и оперением новых форм, что в сочетании с использованием ТРД обеспечило достижение околозвуковых скоростей, а в дальнейшем и значительно превышающих их. Ла-160 (1947) — первый советский экспериментальный самолет со стреловидным крылом (скорость до 1050 км/ч). Ла-176, на котором в 1948 была достигнута скорость звука, имел крыло увеличенной стреловидности (45°).

  В конце 40 — начале 50-х гг. в области исследования больших скоростей работали М. В. Келдыш, С. А. Христианович, Г. И. Петров, М. Д. Миллионщиков, Л. И. Седов. Исследования В. В. Струминского, Г. П. Свищева, А. А. Дородницына, Г. С. Бюшгенса и других ученых позволили разработать новые формы крыльев, органы управления, оперение околозвуковых самолетов. В области прочности самолетных конструкций работали А. И. Макаревский, В. Н. Беляев, А. М. Черемухин и др.

  В начале 50-х гг. были созданы самолеты: Ил-28 — тактический бомбардировщик, Як-25 — всепогодный истребитель-перехватчик; М-4, М-6 (В. М. Мясищев), Ту-16 — дальние стратегические бомбардировщики. Появились вертолеты конструкции М. Л. Миля — Ми-1 и Ми-4, Н. И. Камова — Ка-15, Ка-16 и др., в конце 50 — начале 60-х гг.— Ми-6, Ми-8, Ми-10, в конце 60-х гг.— Ми-12, Ка-25, Ка-26. В 50-х гг. благодаря успехам в аэродинамике и двигателестроении авиация стала сверхзвуковой. Для экспериментальных исследований рациональной компоновки сверхзвуковых самолетов были построены новые аэродинамические трубы и специальные установки для изучения сверхзвуковых диффузоров, сопел и испытаний моделей на флаттер. Необходимые аэродинамические характеристики достигались применением тонких треугольных крыльев и крыльев большой стреловидности. Первый советский серийный сверхзвуковой самолет Миг-19 имел скорость до 1450 км/ч. Ученые приступили к решению проблемы т. н. теплового барьера и обеспечения длит. полета на гиперзвуковых скоростях. В 1954 впервые в СССР был применен в элементах крыла и других теплонапряженных агрегатах, а также освоена технология изготовления конструкций.

  50—60-е гг. ознаменовались дальнейшим повышением летно-тактических данных боевых самолетов, что было обусловлено достижениями отечественной авиационной науки в области аэрогазодинамики, прочности, систем управления, технологических процессов, в создании конструкционных материалов и развитием двигателестроения, приборостроения и ряда смежных отраслей промышленности. Сверхзвуковые самолеты оснащаются мощными, легкими, экономичными двигателями, созданными в коллективах, руководимых Туманским, Люлькой, Добрыниным, Н. Д. Кузнецовым, П. А. Соловьевым, А. Г. Ивченко. На воздушных парадах в Тушине (1961) и Домодедове (1967) были продемонстрированы новейшие образцы боевой авиационной техники, среди них сверхзвуковые: истребитель МиГ-21, многоцелевой Як-28, истребитель-бомбардировщик Су-7, стратегический бомбардировщик-ракетоносец М-50 (Мясищев). Были впервые показаны самолеты вертикального взлета и посадки и легкие истребители с изменяемой геометрией крыла в полете. К середине 60-х гг. скорость полета самолетов достигла 3000— 3500 км/ч, потолок — свыше 30 км, дальность — свыше 10 тыс. км (с дозаправкой горючего в воздухе она стала еще больше).

  В 50-е гг. количеств. и качеств. изменения произошли в гражданской авиации. Начиная с 1958, увеличиваются темпы роста и объем пассажирских перевозок на самолетах с ТРД, одновременно растет самолетный парк. Так, например, 88% перевозок в 1958 было выполнено на самолетах с поршневыми двигателями, в 1965 такой же объем перевозок был выполнен на самолетах с реактивными двигателями. Существенные изменения претерпели летно-технические и экономические показатели  пассажирских самолетов, особенно скорости полета (увеличились примерно в 2 раза) и теоретической производительности (в 4—5 раз). К началу 60-х гг. в СССР эксплуатировались 7 типов  пассажирских самолетов с реактивными двигателями: в 1955 совершил первый полет пассажирский самолет Ту-104 с двигателями Микулина, в 1957—61 появились самолеты Ил-18, Ан-10, Ан-24 с двигателями Ивченко, Ту-114 с двигателями Кузнецова, Ту-124 и Ту-134 с двигателями Соловьева. В 1965 был построен один из самых больших в мире транспортных самолетов конструкции О. К. Антонова Ан-22 ("Антей"). Важным направлением повышения надежности и безопасности полетов  пассажирских самолетов явилось внедрение указателей и ограничителей опасных режимов, резервирование и дублирование в системах управления самолетами, автоматический систем слепой посадки. Большое внимание уделяется также улучшению взлетно-посадочных характеристик и созданию аварийных задерживающих систем на аэродромах. В начале 70-х гг. на трассы Аэрофлота вышли новые воздушные лайнеры Ту-154, Ил-62М, Ту-134А, Як-40. В декабре 1975 состоялся первый эксплуатационный полет сверхзвукового пассажирского самолета Ту-144. В конце 1976 состоялся первый полет самолета Ил-86 ("аэробуса") — одного из крупнейших пассажирских самолетов мира. Одновременно с развитием пассажирской авиации, с созданием грандиозного воздушного пути над всей страной интенсивно развивается авиация специального применения: сельскохозяйственная, противопожарная, санитарная, метеорологическая и др.

  Крупнейшие конструкторские коллективы возглавляют ныне О. К. Антонов, Р. А. Беляков (ОКБ им. Ар. И. Микояна), В. М. Мясищев, Г. В. Новожилов (ОКБ им. С. В. Ильюшина), А. А. Туполев (ОКБ им. А. Н. Туполева), А. С. Яковлев, М. Н. Тищенко (ОКБ им. М. Л. Миля), В. А. Лотарев (ОКБ А. Г. Ивченко), А. К. Константинов (ОКБ Г. М. Бериева), С. В. Михеев (ОКБ им. Н. И. Камова) и др. В "Основных направлениях развития народного хозяйства СССР на 1976—80 гг." предусматривается проведение экспериментальных и научно-исследовательских работ по созданию новых самолетов и вертолетов с летно-техническими и экономическими характеристиками, соответствующими перспективным требованиям гражданской авиации.

  Периодические издания. Результаты исследований в области аэродинамики и прочности самолетов и других летательных аппаратов публикуются в печатных изданиях ЦАГИ: "Трудах", "Ученых записках" и др.; вопросы развития воздушного транспорта, экономики и технического прогресса гражданской авиации, применения авиации в народном хозяйстве освещаются в журнале министерства гражданской авиации СССР "Гражданская авиация" (с 1931), опыт освоения и боевого применения авиационной техники — в журнале Советских ВВС "Авиация и космонавтика" (с 1918) и других изданиях. См. также Авиация.

  А. А. Архангельский.

  Ракетостроение и космонавтика

  В 19 в. в русской армии с успехом применялись боевые пороховые ракеты (А. Д. Засядко, К. И. Константинов и др.). С середины 19 в. отечественные изобретатели и конструкторы начали работать над возможностью применения принципа реактивного движения к летательным аппаратам (И. И. Третеский, Н. М. Соковнин, Н. А. Телешов). В их проектах аппараты нуждались в атмосфере как в опорной среде и предназначались лишь для полетов в низших ее слоях.

  Совершенно на ином принципе был основан летательный аппарат Н. И. Кибальчича: подъемная сила создавалась при помощи порохового ракетного двигателя, действие которого практически не зависело от состава окружающей среды. Предложенный им "воздухоплавательный прибор" (1881) был, по существу, первым в России проектом ракетного летательного аппарата, принципиально пригодного для полетов в безвоздушном пространстве.

  Первым, кто научно доказал возможность использования реактивного движения для полетов в космосе, был К. Э. Циолковский. В статье "Исследование мировых пространств реактивными приборами" (1903) и в последующих работах он обосновал реальность технического осуществления космических полетов, указал пути развития ракетостроения и космонавтики, дал схемы жидкостных ракет и ракетных двигателей (ЖРД). Высказанные Циолковским технические идеи находят применение при создании современных ракетных двигателей, ракет и других космических аппаратов. Помимо работ Циолковского, вопросам теории реактивного движения были посвящены исследования Н. Е. Жуковского (с 1882), И. В. Мещерского (с 1897) и других ученых. К концу 19 в. в России было предложено свыше 10 проектов реактивных летательных аппаратов (Ф. Р. Гешвенд, А. П. Федоров и др.).

  После Октябрьской революции 1917 экспериментальные работы в области ракетной техники стали проводиться с 1921 в Газодинамической лаборатории (ГДЛ), в которой создавались и с 1928 испытывались в полете ракеты на бездымном порохе (Н. И. Тихомиров, В. А. Артемьев, Г. Э. Лангемак, Б. С. Петропавловский), а с 1929 начаты работы по электрическим и жидкостным ракетным двигателям (В. П. Глушко). В 1926—29 Циолковский дополнил свои исследования по космонавтике; проблемой динамики ракетного полета занимался В. П. Ветчинкин; многие вопросы теории космического полета и ракетостроения нашли новое решение в трудах Ю. В. Кондратюка (1919—29); разработкой межпланетных полетов и проектированием космических летательных аппаратов занимался Ф. А. Цандер (1924—33). В 1932 в Москве была создана Группа изучения реактивного движения (ГИРД), осуществившая под руководством С. П. Королева в 1933 первые пуски советских жидкостных ракет конструкции М. К. Тихонравова и Цандера. В конце 1933 на базе ГДЛ и ГИРД был основан Реактивный институт научно-исследовательский (РНИИ), в котором развернулась широкая программа исследований, завершившаяся созданием многих экспериментальных управляемых и неуправляемых баллистических и крылатых ракет с жидкостными, твердотопливными, гибридными и комбиниров. ракетными двигателями, а также воздушно-реактивных двигателей. В 1937—39 была завершена проводившаяся в ГДЛ разработка твердотопливных реактивных снарядов (Лангемак, Артемьев, И. Т. Клейменов и др.); были созданы многозарядные самоходные пусковые установки с этими снарядами — "Катюши" (И. И. Гвай, В. Н. Галковский,А. П. Павленко и др.) и изготовлены их опытные образцы. В предвоенные годы в Советском Союзе сформировались основные направления в ракетостроении: создание ракет на жидких топливах (низкокипящих и высококипящих) и твердом топливе. В период Великой Отечественной войны 1941—45 был создан серийный образец "Катюши" и разработан ряд новых типов пусковых установок для Советской Армии и ВМФ (В. П. Бармин, В. А. Рудницкий, А. Н. Васильев и др.); велись также работы по созданию жидкостных ракетных ускорителей для серийных боевых самолетов (Глушко, Королев).

  Современное ракетостроение фактически создано в годы первых послевоенных пятилеток (1946—55). Необходимость развития этой отрасли техники и производства отмечалась на 1-й сессии Верховного Совета СССР 2-го созыва в марте 1946. Разработку образцов ракет нового типа приходилось вести одновременно с решением многих организационных задач. Наряду с расширением и реконструкцией действующих заводов был построен ряд крупных НИИ, КБ, заводов, полигонов, были привлечены институты АН СССР, ЦАГИ и другие научные центры.

  В короткие сроки, используя отечеств. и зарубежный опыт, была создана и 10 октября 1948 успешно стартовала первая советская управляемая баллистическая ракета с дальностью около 300 км (Р-1). В конце 40-х гг. над вопросами проектирования и изготовления ракет работали 13 НИИ и КБ, 35 заводов. На базе Р-1 было разработано несколько вариантов высотных научно-исследовательских геофизических ракет. С 1949 начала осуществляться последовательная программа изучения верхних слоев атмосферы с помощью зондирующих ракет, получивших название "академических". Организованная при Президиуме АН СССР Комиссия (председатель А. А. Благонравов) определила содержание этой программы и руководила практическими мероприятиями по ее реализации. В 1951 состоялся первый запуск специальной вертикально стартующей зондирующей ракеты. В полете впервые участвовали живые существа (две подопытные собаки). В этом же году созданы метеорологические ракеты типа МР-1. Планомерное изучение верхней атмосферы Земли стало первым шагом на пути подготовки комплекса исследований космического пространства и его освоения; для этих целей применялись ракеты 1РА-Е, В2А, В5В и др.

  В связи с развернувшимися в начале 50-х гг. работами по созданию межконтинентальных баллистических ракет (МБР) и ракет-носителей (РН) 15 мая 1955 было принято решение о строительстве космодрома Байконур — одного из крупнейших космодромов Советского Союза. 21 августа 1957 прошла испытание первая в мире МБР (Р-7), а 4 октября того же года модифицированным вариантом этой ракеты был запущен первый искусств. спутник Земли (ИСЗ) — началась космическая эра. Запуск первого ИСЗ показал, что выбраны правильные пути решения таких проблем космического полета, как создание ракетных двигателей, систем управления и автоматики РН, баллистики полета. Принципиальным достижением советской космонавтики явилось получение первой космической скорости (около 8 км/сек). На 2-м ИСЗ (выведен на орбиту 3 ноября 1957) впервые в космосе были проведены биологические исследования, а также исследования космических лучей и коротковолновой радиации Солнца. Возникла новая область науки — космическая физика. 15 мая 1958 запущен 3-й ИСЗ — первая автоматическая научная станция. Впервые проведены прямые измерения поля Земли, мягкой корпускулярной радиации Солнца, состава и давления атмосферы, электронной концентрации ионосферы, плотности распределения метеорного вещества вокруг Земли. В качестве источника энергии впервые в СССР применены солнечные батареи.

  После запусков первых ИСЗ и начавшегося развития исследований околоземного космического пространства одним из важнейших шагов космонавтики явилась подготовка к осуществлению полетов человека в космос (с этой целью с 15 мая 1960 по 25 марта 1961 на орбиту вокруг Земли было выведено 5 кораблей-спутников). 12 апреля 1961 — день первого космического полета Ю. А. Гагарина на корабле "Восток", начало эпохи непосредственного проникновения человека в космос. С каждым последующим полетом увеличивалась их продолжительность, возрастал и объем работ, выполнявшихся космонавтами. Суточный полет вокруг Земли совершил Г. С. Титов, трое суток продолжался совместный групповой полет космонавтов А. Г. Николаева и П. Р. Поповича.

  В июне 1963 были совершены многосуточные полеты В. Ф. Быковского и первой женщины-космонавта В. В. Терешковой. Одновременно велись работы по созданию многоместного корабля "Восход", первые испытания которого (октябрь 1964) провели В. М. Комаров, К. П. Феоктистов, Б. Б. Егоров. В марте 1965 на орбиту выведен корабль "Восход-2", пилотируемый П. И. Беляевым и А. А. Леоновым, совершившими первый эксперимент по выходу человека в космос. Необходимость тщательной отработки техники маневрирования в космосе привела к созданию космических аппаратов, способных совершать заданный маневр (помимо посадки). Запуски таких аппаратов ("Полет-1" и "Полет-2") осуществлены в 1963—64. Развитие космической техники на всех этапах опиралось на исследования в области механики космического полета и прикладной небесной механики. Выполнены исследовательские работы по динамике движения космических аппаратов, навигации и управлению, баллистическому проектированию. Проведено уточнение ряда астрономических постоянных по данным наземных наблюдений за движением спутников.

  Полеты космических ракет к Луне и планетам Солнечной системы в СССР начаты 2 января 1959, когда первая автоматическая межпланетная станция (АМС) вышла из поля тяготения Земли, прошла на расстоянии около 7500 км от поверхности Луны и вышла на орбиту вокруг Солнца, став его первым искусств. спутником. Впервые была достигнута вторая космическая скорость (около 11,2 км/сек). На 1 января 1977 выведено в космос 24 АМС серии "Луна", с помощью которых впервые получены фотографии обратной стороны Луны, совершена первая мягкая посадка, переданы панорамы поверхности, создан первый искусственный спутник Луны, трижды доставлены на Землю образцы лунного грунта, а на Луну — самоходные аппараты "Луноход-1" и "Луноход-2". С помощью АМС, запускаемых в сторону Венеры (с 1961) и Марса (с 1962), а также аппаратов серии "Зонд" (1964—70) собран обширный материал, необходимый для обеспечения надежности, конструирования и управления АМС и их радиосвязи с Землей в дальних и продолжит, полетах. На станции "Зонд-2" в системе ориентации испытаны электроракетные плазменные двигатели. На АМС "Зонд-3, -6, -7, -8" были получены высококачественные изображения лунной поверхности. АМС "Марс-2" и "Марс-3" выполнили ряд научных исследований космического пространства на трассе Земля — Марс, Марса и околопланетного пространства с орбиты искусственного спутника планеты. Отделившаяся от "Марса-2" капсула впервые достигла этой планеты, а спускаемый аппарат "Марса-3" совершил мягкую посадку и передал сигналы с ее поверхности. В 1973 впервые полет по межпланетной трассе одновременно совершили 4 АМС; станция "Марс-5" стала 3-м советским искусственным спутником Марса, а АМС "Марс-6" достигла его поверхности.

  Крупные успехи получены в изучении Венеры. Наземные наблюдения планеты велись регулярно, но основными характеристики ее атмосферы, поверхности и облачного слоя оставались неизвестными. С появлением космических аппаратов открылись новые возможности: АМС "Венера-4" (1967) впервые провела прямые исследования атмосферы планеты (создана модель атмосферы), "Венера-5" и "Венера-6" (1969) вновь произвели зондирование венерианской атмосферы, что позволило уточнить ее физико- характеристики. В 1970 "Венера-7" совершила первую мягкую посадку на планету и передала информацию с ее поверхности. В эксперименте на "Венере-8", опустившейся на освещенной Солнцем стороне, впервые была решена задача исследования венерианского грунта в районе посадки, определения физических характеристик поверхностного слоя и распределения освещенности по высоте. С помощью АМС "Венера-9" и "Венера-10" получены первые телевизионные изображения поверхности и выведены первые искусств. спутники Венеры. Интенсивные исследования Венеры, Марса и Луны заложили основы новой науки — сравнительной планетологии.

  Советские ученые провели исследования околоземного космического пространства многими ИСЗ серии "Космос" (запускаемыми с 16 марта 1962), при помощи космической системы "Электрон" (1964), тяжелых спутников серии "Протон" (1965—68) и высокоапогейных спутников "Прогноз" (с 1972). Одной из задач, которые возлагались на первые спутники серии "Космос", являлось изучение космического пространства с точки зрения радиационной опасности для полетов человека. На основании проведенных измерений потоков заряженных частиц подробно изучена трасса полетов космических кораблей и построены радиационные карты для различных высот. Выполнен цикл исследований ионосферы, получены данные об ионной и электронной концентрации, температуре ионов и электронов. Эти данные имели большое значение для изучения свойств ионосферной плазмы и вопросов связи между космическими кораблями. В течение длительного времени ведется изучение галактических и солнечных космических лучей, их энергии и других параметров в окрестности Земли. Проводятся исследования инфракрасного и ультрафиолетового излучения Земли, необходимые для решения ряда геофизических вопросов, а также для отработки систем ориентации спутников. Осуществлен ряд запусков по программе мировой съемки. Комплекс космических и геофизических исследований, выполненных с применением средств ракетно-космической техники, вызвал интенсивное развитие нового научного направления — физики солнечно-земных связей, занимающейся изучением механизмов воздействия Солнца на процессы в околоземном космическом пространстве, атмосфере и биосфере Земли.

  В середине 60-х гг. начата разработка многоместных пилотируемых космических кораблей-спутников "Союз", предназначенных для маневрирования, сближения и стыковки на орбите ИСЗ. С 1967 на орбиты выведено 23 корабля "Союз", в том числе 21 с космонавтами. Новый этап в развитии космонавтики начался с 19 апреля 1971, после запуска первой тяжелой орбитальной станции "Салют". Их создание и эксплуатация позволяют проводить длительные эксперименты в космосе с участием специалистов и решать важные народно-хозяйственные и научные задачи. На 1 января 1977 полеты совершили 38 советских космонавтов на 30 кораблях (один полет суборбитальный) и 4 орбитальных станциях типа "Салют". Многие космонавты совершили по два полета, а В. А. Шаталов и А. С. Елисеев — по три.

  Для выполнения советской космической программы создано несколько типов 2-, 3- и 4-ступенчатых РН различной грузоподъемности (от нескольких сотен кг до десятков т на околоземной орбите): "Восток" (эксплуатируется с 1960), "Космос" (с 1962), "Протон" (с 1965) и др., запускаемых с нескольких космодромов Советского Союза. Эти РН эксплуатируются в различных модификациях.

  Для сообщения РН космических скоростей разработаны мощные ЖРД с уменьшенными габаритами. Их создание стало возможным благодаря реализации в камерах сгорания повышенных давлений за счет использования принципиальных схем, практически исключающих потери на привод турбонасосных агрегатов. Разработка РН и ЖРД способствовала развитию термо-, гидро- и газодинамики, теории теплопередачи и прочности, металлургии высокопрочных и жаростойких материалов, химии топлив, измерит. техники, вакуумной и плазменной технологии .

  Требования космической программы обусловили необходимость конструирования комплексных автоматический устройств при жестких ограничениях, вызванных грузоподъемностью РН и окружающими условиями космического пространства, что явилось дополнительным стимулом для развития совершенно новой отрасли техники — микроэлектроники и создания легких электронных систем. Новые методы компоновки электронной аппаратуры, миниатюризации габаритов, массы и потребления энергии этой аппаратурой были развиты для ее использования в космосе. Быстрый прогресс теории управления способствовал решению сложнейших проблем динамики полета, стабилизации ракеты. Были созданы разнообразные комплексы систем автоматического регулирования, ультраточные гироскопические и гироинерциальные системы с применением цифровых и аналоговых управляющих машин. К достижениям космической техники относятся также системы, обеспечивающие ориентацию с весьма высокой точностью космических аппаратов, системы жизнеобеспечения, комплекс средств мягкой посадки, солнечные батареи и др. Потребности в связи и дистанционном управлении на больших расстояниях привели к развитию высококачественных и высокоточных систем связи, которые способствовали развитию технических методов прослеживания и измерения движущихся космических аппаратов на межпланетных расстояниях, открыв новые области применения ИСЗ. Советские ученые впервые разработали системы космического телевидения и космической связи. Высокоинформативные телеметрические системы позволяют надежно контролировать работу космических аппаратов и передачу научной информации с их борта на Землю.

  Большое практическое значение имеют ИСЗ в народном хозяйстве. С помощью спутников связи "Молния-1" (запускаются с 1965), "Молния-2" (с 1971), "Молния-1С", "Молния-3" (с 1974), "Радуга" (с 1975), телевизионного спутника "Экран" (с 1976) и сети наземных приемных станций "Орбита" осуществляются передачи телевидения и многоканальная радиосвязь, успешно установлена международная телефонная связь. Создана специальная система приема, оперативной обработки и распространения поступающей метеорология, информации ("Метеор"). Практическое использование космической техники включает также географические, геологические и геофизические исследования, поиски полезных ископаемых, использование спутников для контроля за уровнем загрязнения атмосферы, Мирового океана, для навигации, сельского, лесного хозяйства и т. д.

  С 1957 развивается международное сотрудничество в области космических исследований. В 1966 для координации деятельности различных министерств и ведомств по разработке и выполнению международных программ решением Советского правительства был создан Совет по международному сотрудничеству в области исследования и использования космического пространства при АН СССР ("Интеркосмос"). Наиболее крупные программы совместных работ СССР осуществляет со странами социалистического содружества, а также с США, и др. В 1969—76 запущено 16 спутников серии "Интеркосмос". Свыше 10 французских и советско-французских научных экспериментов было выполнено на советских космических аппаратах типа "Луноход", "Марс", "Прогноз" и "Ореол". В апреле 1975 советской РН был запущен спутник "Ариабата". В июле 1975 был проведен первый международный эксперимент с участием пилотируемых кораблей СССР и США по программе ЭПАС ("Союз — Аполлон"), который явился важным шагом в развитии международного сотрудничества в исследовании и использовании космического пространства в мирных целях. На основе договоренности, достигнутой в 1976, в 1978—83 граждане социалистических стран, участвующих в программе "Интеркосмос", совершат полеты совместно с советскими космонавтами на советских космических кораблях и орбитальных станциях.

  В разработке и реализации программы изучения околоземного космического пространства, Луны и планет Солнечной системы участвуют многие научные учреждения АН СССР — Физический институт им. П. Н. Лебедева, Институт прикладной математики, Институт земного магнетизма, ионосферы и распределения радиоволн, Физико-технический институт им. А. Ф. Иоффе, Институт проблем управления, а также созданный в 1965 Институт космических исследований АН СССР. Выдающийся вклад в разработку теоретических проблем космонавтики, в решение принципиальных вопросов, касающихся реализации советской космической программы, в создание новых методов и средств исследования космического пространства внес М. В. Келдыш. Пионером освоения космоса стал С. П. Королев. В 1957 под его рук. был создан первый ракетно-космический комплекс и запущен первый ИСЗ. Не ограничивая свою деятельность созданием РН и космических аппаратов, Королев осуществлял общее техническое руководство работами по первым космическим программам и стал инициатором развития ряда прикладных научных направлений, обеспечивающих дальнейший прогресс в создании РН и космических аппаратов.

  Большое значение для разработки средств изучения околоземного космического пространства имела деятельность виднейшего конструктора космических аппаратов и ракетно-космических систем М. К. Янгеля. Он и руководимый им коллектив внесли существенный вклад в развитие и создание базы международного сотрудничества социалистических стран в области спутниковых исследований. Разработка АМС серий "Луна", "Венера", "Марс", начатая под рук. Королева, была успешно продолжена Г. Н. Бабакиным, создавшим последующие конструкции этих сложнейших космических автоматов. Становление и развитие отечественного жидкостного ракетного двигателестроения, создание силовых установок современных космических ракет связано с именем одного из пионеров ракетно-космической техники В. П. Глушко. Мощные ЖРД, разработанные под его руководством, применяются на всех советских РН.

  В создание ЖРД космических станций и кораблей большой вклад сделан А. М. Исаевым, ЖРД верхних ступеней РН — С. А. Косбергом, систем управления многих РН — Н. А. Пилюгиным, стартовых комплексов многих РН — В. П. Барминым. Для развития и совершенствования космической техники важное значение имеют работы В. Н. Челомея.

  Значительный вклад в разработку и реализацию советской космической программы внесен также учеными Ю. А. Ишлинским, Б. Н. Петровым, Г. И. Петровым и др.; в изучение Луны и планет — А. П. Виноградовым; в осуществление программы медико-биологических космических исследований — В. В. Лариным, Н. М. Сисакяном, О. Г. Газенко и др.

  О масштабах работ, ведущихся по космонавтике в СССР, можно судить по количеству запущенных искусств. спутников Земли, Солнца, Луны, Марса и Венеры, число которых на 1 января 1977 составило около 1100.

  Периодические издания. Теоретические работы в области космической физики и астрономии, биологии и медицины, описания приборов для космических исследований и конструкций космических аппаратов публикуются в научных журналах АН СССР "Космические исследования" (с 1963), в "Вестниках АН СССР" (с 1931), вопросы космической науки и техники — в журналах "Земля и Вселенная" (с 1965), "Природа" (с 1912), "Авиация и космонавтика" (с 1918) и др.

  См. также Космонавтика, "Луна", "Марс", "Венера", "Восток", "Восход", "Союз", "Салют", "Молния", "Орбита", Лунный самоходный аппарат, ЭПАС, Космодром.

  Б. В. Раушенбах, Г. А. Назаров.

  Энергетическая наука и техника

  В дореволюционной России научные исследования, направленные на освоение и использование огромных энергетических ресурсов страны, носили разрозненный характер и часто были результатом инициативы и усилий отдельных ученых и инженеров. Например, в 1910—11 Г. О. Графтио разработал проект Волховской ГЭС. В 1913 Г. М. Кржижановский выдвинул идею создания крупной ГЭС на Волге около Самары, а накануне Октябрьской революции 1917 выполнил ряд работ, в которых обосновал значение проблемы строительства мощных районных электростанций на базе местного топлива и гидроэнергии и их объединения сетями высокого напряжения в крупные электроэнергетические системы. Из-за технической отсталости царской России многие проекты и предложения оставались нереализованными. До Октябрьской революции 1917 в стране была сооружена (1914) единственная крупная районная электростанция ("Электропередача" в Московской области). Построенная под руководством Р. Э. Классона, эта станция была первой в мире ТЭС, работающей на торфе.

  Передовые идеи русских ученых-энергетиков нашли практическое воплощение лишь после Октябрьской революции. Научная энергетическая школа в СССР, основанная в 20-х гг. Г. М. Кржижановским, ведет свое начало от исторического плана ГОЭЛРО. Этот план был первым творческим опытом долгосрочного планирования развития народного хозяйства на базе его электрификации. Трудами Кржижановского, Е. А. Руссаковского, А. Е. Пробста началась систематическая разработка комплексных проблем энергетики, таких, как: единый энергетический баланс страны; основы развития электроэнергетических систем; основы энергетики и электрификации отраслей народного хозяйства; энергоресурсы и их комплексное использование с учетом развития энергетики, промышленности, транспорта, сельского хозяйства. Под редакцией А. В. Винтера и Кржижановского был издан "Атлас энергетических ресурсов СССР" (1933—35). Были исследованы вопросы рациональной структуры и экономического режима эксплуатации сложных электроэнергетических систем; даны методы энергоэкономического изучения режима и параметров эксплуатации в электроэнергетических системах электростанций различного типа; исследованы вопросы теплофикации и роли теплоэлектроцентралей как составной части электроэнергетических систем.

  Узловые вопросы комплексной электрификации народного хозяйства изучались в тесной связи с вопросами электроснабжения промышленных и сельскохозяйственных районов на базе местных энергоресурсов. Большой заслугой энергетической науки было создание получившего широкое практическое применение метода комплексных исследований, рассматривающего каждый элемент энергетики во взаимодействии с другими элементами и окружающей средой. В 60-х гг. получила теоретическое завершение научная концепция Единой электроэнергетической системы (ЕЭЭС) страны, что имело важное значение для планомерной электрификации народного хозяйства.

  Возможности использования ЭВМ и вычислительных математических методов позволили развивать энергетическую науку в направлении системных исследований. На этой основе изучены общие закономерности развития энергетики как совокупности больших энергетических систем с иерархичным построением; исследованы вопросы оптимального управления системами (планирование, проектирование, эксплуатация) при неполной начальной информации; путем многовариантных расчетов выбраны оптимальные структуры систем, а также наилучшие пропорции развития топливно-энергетического комплекса страны в целом с учетом развития единой системы газоснабжения и системы нефтеснабжения; созданы методы долгосрочного прогнозирования и др.

  Электроэнергетика. Для развития советской электроэнергетики характерна постоянная тенденция к централизации электроснабжения, созданию мощных электрических станций, объединенных в электроэнергетические системы и использующих местные энергоресурсы (5 энергосистем в 1928, 28 к 1937). К 1935 Московская электроэнергетическая система стала крупнейшей в Европе, объединив тепловые конденсационные и теплофикационные электростанции, работавшие преимущественно на подмосковном угле и торфе. С 1937 к этой системе подсоединены 2 ГЭС (Иваньковская и Сходненская). Ленинградская система к 1935 объединяла все типы станций — ГЭС и ТЭС (конденсационные и теплофикационные, потреблявшие исключительно местное топливо).

  С увеличением мощности электроэнергетических систем и дальности линий электропередачи (ЛЭП) стала актуальной проблема устойчивости электроэнергетических систем и повышения надежности параллельной работы электростанций. Интенсивное исследование этой проблемы было начато в СССР в 1926—27. В 30-х гг. опубликован ряд работ, посвященных методам расчета устойчивости (С. А. Лебедев, П. С. Жданов и др.).

  С ростом мощности электроэнергетических систем возрастали напряжения ЛЭП. В 30-х гг. были освоены напряжения 110, 150 и 220 кв — сооружены воздушные линии электропередачи, трансформаторные подстанции, создана аппаратура защиты. В связи с усложнением электроэнергетических систем и строительством протяженных ЛЭП большое значение приобрели исследования с использованием расчетных электрических моделей, особенно динамических, позволяющих воспроизводить сложные физические процессы и явления. Работы по моделированию электроэнергетических систем проводились в Энергетическом институте АН СССР (с 1961 Государственный научно-исследовательский энергетический институт им. Г. М. Кржижановского, ЭНИН, Москва) в 1936—41, затем в Ленинградском политехническом институте, а начиная с 1944 — в Московском энергетическом институте (МЭИ).

  С середины 40-х гг. важное место в научных исследованиях начинает занимать изучение проблемы объединения крупных районных электроэнергетических систем линиями электропередач высокого напряжения — 330, 400 и 500 кв. К 1976 общая протяженность электрических сетей напряжением свыше 35 кв превысила 600 тыс. км. Успехи в области электропередачи позволили приступить к решению проблемы объединения электроэнергетических систем и создания ЕЭЭС страны. С этой целью в ЭНИН АН СССР в 1945—60 были разработаны: методика определения технико-экономической эффективности объединения электроэнергетических систем; методика расчета использования мощности ГЭС с учетом графиков электрических нагрузок электроэнергетических систем; метод определения режима нагрузок ЕЭЭС Европейской части СССР; вопросы структуры и энергобаланса объединения электроэнергетических систем Центра и Поволжья; перспективы развития ЕЭЭС Сибири.

  В конце 60-х гг. было завершено создание ЕЭЭС Европейской части СССР и сформированы мощные энергообъединения в Сибири и Средней Азии. В середине 70-х гг. в СССР создана крупнейшая в мире ЕЭЭС, объединяющая свыше 70 районных электроэнергетических систем и работающая совместно с электроэнергетическими системами стран — членов СЭВ. Общая установленная мощность электростанций, входящих в эту систему, превышает 150 Гвт, в то время как мощность всех электростанций СССР составляет около 220 Гвт.

  Советская электроэнергетика занимает передовые позиции в мире. Основные направления ее развития — концентрация генерирования электроэнергии и повышение пропускной способности высоковольтных ЛЭП. К 1976 в СССР насчитывалось более 60 крупных ТЭС и ГЭС мощностью от 1 до 6 Гвт. Их общая установленная мощность составляет почти половину всех энергетических мощностей страны.

  Высоких технико-экономических показателей достигли тепловые электростанции. Удельный расход условного топлива на 1 квтч отпущенной электроэнергии составляет на ТЭС около 340 г. Отличит. особенность советской электроэнергетики — широкое строительство теплоэлектроцентралей (ТЭЦ), отпускающих потребителю не только электроэнергию, но и тепловую энергию за счет тепла отработавшего пара. Комбинированное производство энергии на ТЭЦ дает в год до 25 млн. т экономии условного топлива (11% всего топлива, идущего на производство электроэнергии). Важное значение придается использованию в качестве топлива для ТЭС дешевых углей таких месторождений, как Канско-Ачинское, Экибастузское и др.

  Достижения советской электроэнергетики стали возможны благодаря коренному изменению научных концепций энергетики и конструкций турбин и генераторов, котлоагрегатов, трансформаторов и преобразовательных устройств, ЛЭП и гидротехнических сооружений. Работы по техническому оснащению современным оборудованием электростанций и электроэнергетических систем ведутся многими научно-исследовательскими и проектно-конструкторскими организациями. Благодаря усилиям ученых, инженеров и техников в СССР созданы уникальные гидроагрегаты единичной мощностью свыше 500 Мвт, турбоагрегаты (800 и 1200 Мвт), паровые котлы с производительностью 2500 т/ч, намечено сооружение сверхдальних линий высокого напряжения (1150 кв переменного тока и 1500 кв постоянного тока) для соединения электроэнергетических систем Средней Азии и Сибири с ЕЭЭС Европейской части СССР. Наряду с совершенствованием традиционных способов передачи электроэнергии советские ученые разрабатывают принципиально новые способы передачи значительных количеств электроэнергии.

  Успешно решаются задачи, связанные с прямым преобразованием тепловой энергии в электрическую. В 1962—65 проведены теоретические и экспериментальные исследования, в результате чего в 1965 была создана модельная энергетическая установка, а в 1971 дала ток первая в СССР опытно-промышленная установка с генератором, имеющим расчетную мощность 20—25 Мвт, а в марте 1975 был осуществлен пуск очередной установки мощностью 12,5 Мвт.

  Характерная особенность современной энергетической науки — разработка таких перспективных направлений, как ядерная и термоядерная энергетика. Решение проблемы развития ядерной энергетики имеет большое научное, техническое и экономическое значение в связи с уменьшением природных запасов угля, нефти и газа (на которых работают ТЭС), удорожанием их добычи и т. д. В 70-х гг. наметилась тенденция ускоренного развития ядерной энергетики, доля которой в общем количестве вырабатываемой в мире электрической энергии неуклонно возрастает.

  Важное место в электроэнергетике занимают проблемы, связанные с новыми методами преобразования тепловой и энергии в электрическую, использованием внутреннего тепла Земли и солнечной радиации, разработкой методов и средств аккумулирования значит. количества электрической энергии. Большое внимание уделяется автоматизации как отдельных электростанций, так и электроэнергетических систем. Дальнейший прогресс в энергетике связан с кибернетизацией энергосистем, разработкой автоматизированных систем управления электроэнергетикой (В. А. Веников и др.). Существ. вклад в развитие современной электроэнергетики — труды И. А. Глебова, М. П. Костенко, Л. А. Мелентьева, В. И. Попкова, В. М. Тучкевича, Д. Г. Жимерина, Н. Н. Ковалева, Н. С. Лидоренко, Н. В. Разина и многих других

  Основные исследования по проблемам электроэнергетики проводятся в ЭНИН, Всесоюзном государственном проектно-изыскательском и научно-исследовательском институте энергетических систем и электрических сетей (институте "Энергосетьпроект", Москва), Всесоюзном электротехническом институте им. В. И. Ленина (ВЭИ, Москва), МЭИ, Всесоюзном научно-исследовательском институте постоянного тока, Сибирском энергетическом институте АН СССР (Новосибирск) и др.

  См. также Электроэнергетика, Электротехника, Электростанция, Линия электропередачи, Магнитогидродинамический генератор.

  Гидроэнергетика. После Октябрьской революции 1917 началось освоение богатейших гидроресурсов страны. В июне 1918 СНК принял решение о строительстве первенца советской гидроэнергетики — Волховской ГЭС мощностью 58 Мвт. Вопросы гидроэнергетического строительства заняли важное место в ленинском плане ГОЭЛРО, при подготовке которого были обобщены результаты работ, проведенных виднейшими русскими учеными и инженерами в области использования гидроресурсов, а также сформулированы основные положения и принципы рационального использования водной энергии (экономичность, комплексность, регулирование стока, высоконапорность и работа в системе). Эти принципы сохранили свое основополагающее значение на всех этапах развития советской гидроэнергетики.

  К концу 20-х гг. были построены 6 ГЭС мощностью свыше 1 Мвт. Строительство этих станций положило начало и советскому гидромашиностроению. Первые гидротурбины небольшой мощности строил Московский завод им. М. И. средние и крупные агрегаты изготовлялись на Ленинградском металлическом заводе (ЛМЗ). Выпущенная в 1924 на ЛМЗ первая радиально-осевая турбина мощностью 370 квт при напоре 14 м (для Окуловской ГЭС) в 12 раз превысила среднюю мощность гидротурбин, построенных до 1917.

  Выдающимся достижением советского гидростроения было сооружение в 1932 Днепровской ГЭС, проект которой был разработан группой ученых под руководством И. Г. Александрова. Каждая из ее турбин значительно превышала единичную мощность самых крупных электростанций дореволюционной России и с избытком перекрывала всю установленную мощность Волховской ГЭС. Бетонная плотина станции представляла собой одно из наиболее грандиозных сооружений в мировой гидроэнергетической практике. Здесь же впервые в СССР для электропередачи было применено напряжение 154 кв. На Днепровской ГЭС было установлено уникальное по тем временам гидроэнергетическое оборудование.

  В научном плане проектирование и строительство Днепровской ГЭС повлекло за собой развитие исследований по гидравлике сооружений, изучению и укреплению скальных оснований, теории расчета гравитационных плотин, гидравлике турбин, технологии и прочности бетона. Архитектурное решение здания и всего ансамбля сооружений Днепровской ГЭС является примером органического единства архитектуры и строительной техники.

  В связи с развитием народного хозяйства в период первых пятилеток встал вопрос о комплексном использовании крупных рек Восточно-европейской равнины — Волги, Камы, Свири и др. Сложность использования гидроэнергетических ресурсов этих рек состояла в том, что гидротехнические сооружения надо было возводить на глинах и песках. Мирового опыта гидротехнического строительства на таких грунтах не было. В результате научно-исследовательских работ по теории гидросооружений, фильтрационных и статических расчетов, по устойчивости грунтов и сооружений были разработаны и возведены плотины нового типа на песчаных и глинистых основаниях с напором до 30 м, что зарубежными специалистами ранее считалось не осуществимым.

  Перед Великой Отечественной войной 1941—1945 была введена в эксплуатацию Нижнесвирская ГЭС им. Г. О. Графтио, оборудованная крупнейшими в то время поворотно-лопастными турбинами мощностью 29 Мвт с диаметром рабочего колеса 7,4 м. Эта ГЭС впервые в мировой практике сооружена на сжимаемых глинистых грунтах с очень низким коэффициента сдвига. Советские гидростроители успешно справились с трудностями строительства плотины на моренном основании, применив оригинальную "наклонную" компоновку гидростанции. При возведении сооружений Свирьстроя проводились модельные испытания, что явилось основой нового в исследованиях экспериментального метода электрогидродинамических аналогий (ЭГДА) Н. Н. Павловского.

  Важный этап в развитии гидроэнергетики связан с освоением громадных энергетических возможностей Волги. Началом ее использования для нужд энергетики, судоходства и водоснабжения было строительство в 1932—37 Канала им. Москвы с двумя электростанциями средней мощности (Иваньковской и Сходненской) и двумя малой мощности (Карамышевской и Перервинской). Вслед за постройкой Иваньковской ГЭС на Волге развернулось строительство двух гидроузлов в районе Углича и Рыбинска.

  После Великой Отечественной войны советская гидроэнергетика поднялась на качественно новый уровень развития. С внедрением автоматизации электростанций производительность труда на них по сравнению с довоенным уровнем повысилась на 50%; завершилась полная автоматизация районных ГЭС, начались телемеханизация и автоматизация энергетических систем; уже к концу 1952 был закончен перевод на телеуправление 60% всех ГЭС. Среди объектов гидроэнергостроительства в 1946—58 первое по важности место заняли ГЭС Волжско-Камского каскада. Были сооружены Горыновская и Камская ГЭС, в 1958 состоялся пуск на полную мощность (2,3 Гвт) Волжской ГЭС им. В. И. Ленина. В том же году вошли в строй первые агрегаты Волжской ГЭС им. 22-го съезда КПСС. Гидротехническое строительство на Волге потребовало выполнения обширных научных исследований, разработки новых технических решений и конструкций. Такого рода гидроузлы предусматривают пропуск через гидротехнические сооружения громадных масс воды; например, для Волжской ГЭС им. 22-го съезда КПСС расчет проведен на поток с расходом в 64 000 м3/сек, обладающий огромной энергией, значит. часть которой необходимо погасить при пропуске через сооружения. На этих ГЭС установлены уникальные турбины с диаметром рабочего колеса свыше 9 м. Днепровский каскад пополнился Каховской ГЭС, было развернуто строительство Кременчугской и Днепродзержинской ГЭС. На Севано-Разданском каскаде в Армении были введены 4 новые ГЭС. Началось освоение богатейших запасов водной энергии восточного Казахстана и Сибири, где были возведены ГЭС: Иркутская на Ангаре, Новосибирская на Оби, Усть-Каменогорская на Иртыше и начато строительство Братской ГЭС на Ангаре и Бухтарминской ГЭС на Иртыше.

  Развитие гидротехнического строительства в Советском Союзе выдвинуло ряд проблем, касающихся речного стока, методов его регулирования, использования водной энергии. Были созданы методы инженерного расчета, получившие широкое применение при проектировании, строительстве и эксплуатации гидротехнических сооружений. С начала 60-х гг. осуществляется освоение гидроэнергетических ресурсов Ангары и Енисея. Определяющим направлением технического прогресса при этом является возведение высоких плотин на скальных основаниях. Проведена разработка ряда вопросов гидродинамики в связи с необходимостью сброса больших масс воды во время паводков. Разработаны вопросы термического состояния бетонных массивов плотин.

  В 1959—65 на новых ГЭС была введена в действие мощность 11,4 Гвт. Суммарная мощность ГЭС к 1965 достигла 22,2 Гвт. Было завершено строительство 14 ГЭС мощностью свыше 1 Гвт. Среди них Братская ГЭС, мощность которой к концу 1965 достигла 3,825 Гвт, Волжская ГЭС им. 22-го съезда КПСС (2,53 Гвт), Волжская ГЭС им. В. И. Ленина (2,3 Гвт), Боткинская ГЭС (1 Гвт). Было начато сооружение 18 новых ГЭС. Среди них Нурекская (2,7 Гвт), Ингурская (1,02 Гвт), Чиркейская (1 Гвт). Как правило, новые ГЭС имели комплексное значение для народного хозяйства (Нурекский, Токтогульский, Чарвакский гидроузлы).

  В 1966—70 гидроэнергетическое строительство продолжалось в широких масштабах. Отличительная особенность этого периода — сооружение мощных высоконапорных ГЭС с высотой плотин до 250—300 м и установкой мощных гидроагрегатов. О масштабах технического прогресса можно судить по Красноярской ГЭС мощностью 6 Гвт с гидротурбинами мощностью 508 Мвт. При плотине Красноярской ГЭС построен судоподъемник оригинальной конструкции, позволяющий судам преодолевать стометровый перепад. Было развернуто строительство Саяно-Шушенской (6,4 Гвт), Усть-Илимской (4,3 Гвт) и ряда других крупных ГЭС.

  Для горных рек Кавказа и Средней Азии характерно возведение высоких плотин: Ингурской арочной (271 м), Токтогульской гравитационной (215 м), Нурекской каменно-земляной (312 м). Высокая сейсмичность районов строительства потребовала разработки новых методов возведения плотин.

  Основные направления гидроэнергетического строительства 70-х гг.: первоочередное использование наиболее эффективных гидроэнергоресурсов в восточных районах страны и прежде всего на Ангаре и Енисее, которые представляют собой источник дешевой электроэнергии для энергоемких производств; сооружение ГЭС с относительно небольшим годовым числом часов использования установленной мощности и ряда гидроаккумулирующих электростанций в районах Северо-Запада, Центра и Юга Европейской части СССР; комплексное использование водно-энергетических ресурсов в районах с неэнергоемкими отраслями хозяйства; интенсивное освоение гидроэнергетических ресурсов в районах, располагающих ограниченными запасами топлива (в Закавказье, Карелии, районах Крайнего Севера).

  Важнейшие направления индустриализации строительства ГЭС — переход на тонкостенные и предварительно напряженные конструкции плотин, в частности на применение арочных контрфорсных и ячеистых плотин, широкое использование местных материалов, а также комплексная механизация и автоматизация производственных процессов.

  Основные проблемы гидроэнергетики разрабатываются в институте Гидропроект им. С. Я. Жука (Москва), Всесоюзном НИИ гидротехники им. Б. Е. Веденеева (ВНИИГ, Ленинград), Тбилисском НИИ сооружений гидроэнергетики им. А. В. Винтера (ТНИСГЭИ), ЭНИН и др.

  См. также Гидроэнергетика, Гидротехника, Гидроэлектрическая станция, Гидроузел.

  Теплоэнергетика. Первые успехи советской теплоэнергетики связаны с выполнением плана ГОЭЛРО, предусматривавшим сооружение 22 ТЭС, работающих на местном топливе (торфе, подмосковном угле, донецком антрацитовом штыбе, кузнецком угле).

  Строительство энергетических объектов потребовало проведения целого ряда теоретических и прикладных работ по теплотехнике. Еще в первые годы Советской власти А. А. Радциг провел большую работу по обобщению имевшихся опытных данных и составлению формул и таблиц для определения термодинамических свойств водяного пара. С 1935 работы в этом направлении продолжались в МЭИ, а в 1938 была закончена разработка физически обоснованного уравнения состояния водяного пара (М. П. Вукалович, И. И. Новиков). На основе этих работ были составлены первые отечественные таблицы свойств водяного пара (1941). Начиная с 30-х гг. экспериментальные исследования физических свойств воды и водяного пара систематически проводились во Всесоюзном научно-исследовательском теплотехническом институте им. Ф. Э. Дзержинского (ВТИ, Москва) (Д. Л. Тимрот). В результате этих исследований были определены вязкость, теплопроводность, теплоемкость, удельный объем водяного пара при давлениях до 51,5 Мн/м2 и температурах до 660 °С. Проводились термодинамические исследования и других теплоносителей. С конца 30-х гг. во ВТИ, МГУ, Энергетическом институте АН СССР (ЭНИН АН СССР), МЭИ и других НИИ осуществлялись экспериментальные работы по определению теплопроводности чистых жидкостей, растворов, газов, сталей и других материалов.

  В 20-х гг. паровые котлы производительностью до 20 т/ч при давлении пара до 1,5 Мн/м2 выпускали Ленинградский металлический завод (Л М 3), Невский завод им. Ленина (НЗЛ) и Таганрогский завод "Красный котельщик" (ТКЗ). В эти годы М. В. Кирпичевым была создана теория теплового моделирования, давшая метод изучения тепловых и аэродинамических процессов, протекающих в паровых котлах. Посредством этого метода определялись оптимальные условия обтекания поверхности нагрева паровых котлов дымовыми газами. Увеличение единичной производительности котлов потребовало разработки механизированных топочных устройств — шахтно-цепных топок Т. Ф. Макарьева (Центральный котлотурбинный институт, ЦКТИ) для сжигания кускового торфа и цепных топок для каменных углей. Дальнейшее развитие теплоэнергетики привело к созданию камерных топок для сжигания пылевидного топлива — бурых и каменных углей и антрацитового штыба, считавшегося ранее непригодным для использования отходом угледобычи. Для сжигания фрезерного торфа, пришедшего на смену кусковому, были разработаны камерные топки — ВТИ — Мосэнерго и А. А. Шершнева (ЦКТИ). Развитие котлостроения сопровождалось научно-исследовательскими работами по изучению физических процессов, протекающих в котлоагрегатах.

  Первые экспериментальные работы по конвективному теплообмену были начаты в 20-х гг.; среди них важное для техники значение имели исследования теплоотдачи при движении жидкости в трубах и каналах. Экспериментальное изучение вопросов теплообмена при ламинарном и турбулентном движении различных жидкостей проводилось в 30-е гг. во ВТИ, МЭИ и ЭНИН АН СССР. Теоретические исследования по теплообмену при турбулентном движении были выполнены в ЦКТИ. В результате этих работ созданы основы для расчета теплообмена в трубах


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 21:06:35