|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Спектральный анализ (физич., химич.) | Спектральный анализ (далее С) физический метод качественного и количественного определения и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С (физич., спектроскопия и молекул, его классифицируют по целям анализа и типам спектров (см. Спектры оптические). С (физич., (АФА). В этих методах пробу превращают в пар в (пламени, графитовой трубке, плазме стабилизированного ВЧ-или СВЧ-разряда). В ААА свет от источника дискретного излучения, проходя через этот пар, ослабляется и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на специальных спектрофотометрах. Методика проведения ААА по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. ААА с успехом заменяет трудоемкие и длительные методы анализа, не уступая им в точности .
В АФА пары пробы облучают светом источника резонансного излучения и регистрируют флуоресценцию определяемого элемента. Для некоторых элементов (, , и др.) относительные пределы их обнаружения этим методом весьма малы (~10-5-106 %).
АСА позволяет проводить измерения изотопного состава. Некоторые элементы имеют спектральные линии с хорошо разрешенной структурой (например, Н, Не, ). Изотопный состав этих элементов можно измерять на обычных спектральных приборах с помощью источников света, дающих тонкие спектральные линии (полый катод, безэлектродные ВЧ-и СВЧ-лампы). Для проведения изотопного спектрального анализа большинства элементов требуются приборы высокой разрешающей способности (например, эталон Фабри - Перо). Изотопный спектральный анализ можно также проводить по электронно-колебательным спектрам молекул, измеряя изотопные сдвиги полос, достигающие в ряде случаев значительной величины.
Экспрессные методы АСА широко применяются в промышленности, сельском хозяйстве, геологии и многих др. областях народного хозяйства и науки. Значительную роль АСА играет в технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3/4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2-3 мин) контроль в ходе плавки в мартеновском и конвертерном производствах. В геологии и геологической разведке для оценки месторождений производят около 8 млн. анализов в год. АСА применяется для охраны окружающей среды и анализа почв, в криминалистике и медицине, геологии морского дна и исследовании состава верхних слоев атмосферы, при разделении изотопов и определении возраста и состава геологических и археологических объектов и т. д.
Лит.: Заидель А. Н., Основы спектрального анализа, М., 1965; Методы спектрального анализа, М,, 1962; Эмиссионный спектральный анализ материалов, Л. - М., 1960; Русанов А. К., Основы количественного спектрального анализа руд и минералов. М., 1971; С чистых веществ, под ред. X. И. Зильберштейна, (Л.), 1971; Львов Б. В., спектральный анализ, М., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич Н. И.. Семененко К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, М., 1973: Прокофьев В. К., Фотографические методы количественного спектрального анализа металлов и сплавов, ч. 1-2, М. - Л., 1951; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Королев Н. В., Рюхин В. В., Горбунов С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 3 изд., М., 1969; Стриганов A. ., Свентицкий Н. С., Таблицы спектральных линий нейтральных и ионизованных М., 1966.
Л. В. Липис.
Молекулярный спектральный анализ (МСА)
В основе МСЛ лежит качественное и количественное сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качественный и количественный МСА. В МСА используют различные виды молекулярных спектров, вращательные (спектры в микроволновой и длинноволновой инфракрасной (ИК) областях), колебательные и колебательно-вращательные (спектры поглощения и испускания в средней ИК-области, спектры комбинационного рассеяния света (КРС), спектры ИК-флуоресценции), электронные, электронно-колебательные и электронно-колебательно-вращательные (спектры поглощения и пропускания в видимой и ультрафиолетовой (УФ) областях, спектры флуоресценции). МСА позволяет проводить анализ малых количеств (в некоторых случаях доли мкг и менее) веществ, находящихся в различных агрегатных состояниях.
Основные факторы, определяющие возможности методов МСА:
1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определенном интервале длин волн или частот исследуемого диапазона (для микроволнового диапазона оно ~ 105, для средней ИК-области в спектрах твердых и жидких веществ ~ 103);
2) количество измеренных спектров индивидуальных соединений;
3) существование общих закономерностей между спектром вещества и его молекулярным строением;
4) чувствительность и избирательность метода;
5) универсальность метода;
6) простота и доступность измерений спектров.
Качественный МСА устанавливает молекулярный состав исследуемого образца. Спектр молекулы является его однозначной характеристикой. Наиболее специфичны спектры веществ в газообразном состоянии с разрешенной вращательной структурой, которые исследуют с помощью спектральных приборов высокой разрешающей способности. Наиболее широко используют спектры ИК-поглощения и КРС веществ в жидком и твердом состояниях, а также спектры поглощения в видимой и УФ-областях. Широкому внедрению метода КРС способствовало применение для их возбуждения лазерного излучения.
Для повышения эффективности МСА в некоторых случаях измерение спектров комбинируют с др. методами идентификации веществ. Так, все большее распространение получает сочетание разделения смесей веществ с измерением ИК-спектров поглощения выделенных компонент.
К качественному МСА относится также т. н. структурный молекулярный анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания общие черты. Наиболее ярко это проявляется в колебательных спектрах. Так, наличие сульфгидрильной группы (-) в структуре молекулы влечет за собой появление в спектре полосы в интервале 2565-2575 см-1, нитрильная группа (-) характеризуется полосой 2200-2300 cм-1 и т. д. Присутствие таких характеристических полоса колебательных спектрах веществ с общими структурными элементами объясняется характеристичностью частоты и формы многих молекулярных колебаний. Подобные особенности колебательных (и в меньшей степени электронных) спектров во многих случаях позволяют определять структурный тип вещества.
Качественный анализ существенно упрощает и ускоряет применение ЭВМ. В принципе его можно полностью автоматизировать, вводя показания спектральных приборов непосредственно в ЭВМ. В ее памяти должны быть заложены спектральные характеристические признаки многих веществ, на основании которых машина произведет анализ исследуемого вещества.
Количественный МСА по спектрам поглощения основан на Бугера - Ламберта - Бера законе, устанавливающем связь между интенсивностями падающего и прошедшего через вещество света от толщины поглощающего слоя и концентрации вещества с:
(l)=0e-ccl
Коэффициент c является характеристикой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие проведения количественного МСА - независимость c от концентрации вещества и постоянство c в измеряемом интервале частот, определяемом шириной щели спектрофотометра. МСА по спектрам поглощения проводят преимущественно для жидкостей и растворов, для газов он значительно усложняется.
В практическом МСА обычно измеряют т. н. оптическую плотность:
D = (/о//) = cсl.
Если смесь состоит из n веществ, не реагирующих друг с другом, то оптическая плотность смеси на частоте n аддитивна: . Это позволяет проводить полный или частичный анализ многокомпонентных смесей. Задача в этом случае сводится к измерению значений оптической плотности в m точках спектра смеси (m ³ n) и решению получаемой системы уравнений:
Для количественного МСА обычно пользуются спектрофотометрами, позволяющими производить измерение /(n) в сравнительно широком интервале n . Если полоса поглощения исследуемого вещества достаточно изолирована и свободна от наложения полос др. компонент смеси, исследуемый спектральный участок можно выделить, например, при помощи интерференционного светофильтра. На его основе конструируют специализированные анализаторы, широко используемые в промышленности.
При количественном МСА по спектрам КРС чаще всего интенсивность линии определяемого компонента смеси сравнивают с интенсивностью некоторой линии стандартного вещества, измеренной в тех же условиях (метод "внешнего стандарта"). В др. случаях стандартное вещество добавляют к исследуемому в определенном количестве (метод "внутреннего стандарта" ).
Среди др. методов качественного и количественного МСА наибольшей чувствительностью обладает флуоресцентный анализ, однако в обычных условиях он уступает методам колебательной спектроскопии в универсальности и избирательности. Количественный МСА по спектрам флуоресценции основан на сравнении свечения раствора исследуемого образца со свечением ряда эталонных растворов близкой концентрации.
Особое значение имеет МСА с применением техники замороженных растворов в специальных растворителях, например парафинах (см. Шпольского эффект). Спектры веществ в таких растворах (спектры Шпольского) обладают ярко выраженной индивидуальностью, они резко различны для близких по строению и даже изомерных молекул. Это позволяет идентифицировать вещества, которые по спектрам их флуоресценции в обычных условиях установить не удается. Например, метод Шпольского дает возможность осуществлять качественный и количественный анализ сложных смесей, содержащих ароматические углеводороды. Качественный анализ в этом случае производят по спектрам люминесценции и поглощения, количественный - по спектрам люминесценции методами "внутреннего" и "внешнего" стандартов. Благодаря исключительно малой ширине спектральных линий в спектрах Шпольского в этом методе удается достигнуть пороговой чувствительности обнаружения некоторых многоатомных ароматических соединений (~ 10~11 г/см3).
Лит.: Чулановский В. М., Введение в молекулярный спектральный анализ, М. - Л., 1951; Беллами Л., Инфракрасные спектры сложных молекул, пер. с англ., М., 1963; Применение спектроскопии в химии, пер. с англ., М., 1959; Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом, М., 1959; Юденфренд С., Флуоресцентный анализ в биологии и медицине, пер. с англ., М., 1965.
В. Т. Алексанян.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 16:59:01
|
|
|
|
|
|
|
|
|
|