Большая Советская Энциклопедия (цитаты)

Спектральный анализ (в линейной алгебре)

Спектральный анализ (далее С) линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор, Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида , где х есть n-мерный вектор отклонений обобщенных координат системы от их равновесных значений, а А — симметрическая положительно определенная матрица. Такое движение может быть представлено в виде наложения n гармонических колебаний (т. н. нормальных колебаний) с круговыми частотами, равными корням квадратным из всевозможных собственных значений l k матрицы А. Нахождение нормальных колебаний системы здесь сводится к нахождению всех собственных значений lk; и собственных векторов xk матрицы А. Совокупность всех собственных значений матрицы называют ее спектром. Если матрица А — симметрическая, то ее спектр состоит из n действительных чисел l1, ..., ln (некоторые из них могут совпадать друг с другом), а сама матрица с помощью перехода к новой системе координат может быть приведена к диагональному виду, т. е. отвечающее ей линейное преобразование А в n-мерном пространстве (т. н. самосопряженное преобразование) допускает специальное представление — т. н. спектральное разложение вида



  где E1,..., En операторы проектирования на взаимно перпендикулярные направления собственных векторов х1, ......, xn. Несимметрическая же матрица А (которой отвечает несамосопряженное линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел l1, ..., l1, и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме (см. Нормальная (жорданова) форма матриц), отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.

  При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f(x) интегрального оператора А, так что здесь

,

  где К(х, у) заданная на квадрате а £ х, у £ b непрерывная функция двух переменных, удовлетворяющая условию симметрии К(х, у) = К(у, х). В этих случаях оператор А всегда имеет полную систему попарно ортогональных собственных функций jk, которым отвечает счетная последовательность действительных собственных значений lk, составляющих в своей совокупности спектр оператора А. Если рассматривать функции, на которые действует оператор А, как векторы гильбертова пространства, то действие А будет, как и в случае конечномерного самосопряженного преобразования, сводиться к растяжению пространства вдоль системы взаимно ортогональных осей jk с коэффициентами растяжения lk (при lk < 0 такое растяжение имеет смысл растяжения с коэффициентом |lk|, объединенного с зеркальным отражением), а сам оператор А здесь снова будет иметь спектральное разложение вида



  где Ek операторы проектирования на направления jk.

  С (в линейной алгебре), развитый первоначально для интегральных операторов с симметричным ядром К(х, у), определенным и непрерывным в некоторой ограниченной области, был затем в рамках общей теории операторов распространен на многие другие типы линейных операторов (например, на интегральные операторы с ядром, имеющим особенность или заданным в неограниченной области, дифференциальные операторы в пространствах функций одного или нескольких переменных и т. д.), а также на абстрактно заданные линейные операторы в бесконечномерных линейных пространствах. Оказалось, однако, что такое распространение связано с существенным усложнением С (в линейной алгебре), так как для многих линейных операторов собственные значения и собственные функции, понимаемые в обычном смысле, вообще не существуют. Поэтому в общем случае спектр приходится определять не как совокупность собственных значений оператора А, а как совокупность тех значений, для которых оператор (А — lЕ)-1, где Е — тождественный (единичный) оператор, не существует, или определен лишь на неплотном множестве, или является неограниченным оператором. Все собственные значения оператора принадлежат его спектру и в совокупности образуют его дискретный спектр; остальную часть спектра часто называют непрерывным спектром оператора (иногда же непрерывным спектром называют лишь совокупность тех l, при которых оператор (А — lЕ)-1 определен на плотном множестве элементов пространства, но неограничен, а все точки спектра, не входящие ни в дискретный, ни в непрерывный спектр, называют остаточным спектром).

  Наиболее разработан С (в линейной алгебре) самосопряженных линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряженный оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида

 (*)

  где E(l) т. н. разложение единицы (отвечающее оператору А), т. е. семейство проекционных операторов, удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е(l); в случае чисто дискретного спектра все они являются скачками Е(l), так что здесь



  и спектральное разложение (*) сводится к разложению



  Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |l| = 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -¥ до ¥ интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению (*) виде, но где уже интегрирование в правой части распространено на более общее множество точек l комплексной плоскости, представляющее собой спектр А. Что касается С (в линейной алгебре) несамосопряженных и не являющихся нормальными линейных операторов, обобщающих произвольные несимметрические матрицы, то ему были посвящены многочисленные работы Дж. Биркгофа (США), Т. Карлемана (Швеция), М. В. Келдыша, М. Г. Крейна (СССР), Б. Секефальви-Надя (Венгрия), Н. Данфорда (США) и многих др. ученых, но тем не менее соответствующая теория еще далека от полной завершенности.

  С (в линейной алгебре) линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, теории случайных процессов, дифференциальных и интегральных уравнений и др. областях математики и математической физики.

  Лит.: Курант ., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М. — Л., 1951; Ахиезер Н. И., Глазман И.М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Плеснер А. И., Спектральная теория линейных операторов, М., 1965; Рисе Ф., Секефальви Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Секефальви-Надь Б., Фояш Ч., Гармонический анализ операторов в гильбертовом пространстве, пер. с франц., М., 1970; Данфорд Н., Шварц Дж. Т., Линейные операторы, пер. с англ., ч. 2—3, М., 1966—74; Келдыш М. В., Лидский В. Б., Вопросы спектральной теории несамосопряженных операторов, в кн.: Тр. 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 101—20.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 22:58:51