Большая Советская Энциклопедия (цитаты)

Сверхпроводимость

Сверхпроводимость (далее С) свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определенной критической температуры Тк, характерной для данного материала. С обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников. Рекордно высоким значением Тк (около 23 К) обладает соединение 3.

  Основные явления. Скачкообразное исчезновение сопротивления при понижении температуры впервые наблюдал X. Камерлинг-Оннес (1911) на (рис. 1). Он пришел к выводу, что при Т = 4,15 К переходит в новое состояние, которое вследствие его необычных электрических свойств может быть названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление восстанавливается при включении достаточно сильного поля (его называют критическим магнитным полем Нк). Измерения показали, что падение сопротивления до нуля происходит на протяжении очень узкого, но конечного интервала температур.

  Ширина этого интервала для чистых образцов составляет 10-3 — 10-4 К и возрастает при наличии примесей и других дефектов структуры.

  Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий с течением времени. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии поля ниже температуры Тк, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше чем 10-20 ом×см (сопротивление чистых образцов меди или составляет около 10-9 ом×см при температуре жидкого Однако сверхпроводник не является просто идеальным проводником, как это считалось еще в течение более чем 20 лет после открытия С Существование значительно более глубокого различия между нормальным и сверхпроводящим состояниями металла стало очевидным, после того как нем. физики В. Мейснер и Р. Оксенфельд (1933) установили, что слабое поле не проникает в глубь сверхпроводника. Особенно важно, что это имеет место независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его поток. Это различие иллюстрирует рис. 2 (а, б, в), на котором схематически изображено распределение поля вблизи односвязного металлического образца на трех последовательных этапах опыта: а) образец находится в нормальном состоянии, внешнее поле свободно проникает в глубь металла; б) образец охлаждается ниже Тк, поле выталкивается из сверхпроводника (верхний рисунок), тогда как в случае идеального проводника распределение поля оставалось бы неизменным (нижний рисунок); в) внешнее поле выключается, при этом исчезает и намагниченность сверхпроводника. В случае идеального проводника поток индукции через образец сохранил бы свою величину, и картина поля была бы такой же, как у постоянного
  Выталкивание поля из сверхпроводящего образца (это явление обычно называют эффектом Мейснера) означает, что в присутствии внешнего поля такой образец ведет себя как идеальный диамагнетик той же формы с магнитной восприимчивостью c= —1/4p. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то момент, отнесенный к единице объема, будет равен М = —Н/4p. Это примерно в 105 раз больше по абсолютной величине, чем удельная намагниченность диамагнитного металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < Нк в поверхностном слое сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что поле этого тока компенсирует внешнее поле в толще сверхпроводника. Опыт показывает, что в случае больших образцов слабое поле в условиях эффекта Мейснера проникает в металл на глубину d ~ 10-5—10-6 см, именно в этом слое течет поверхностный токоло

  По своему поведению в достаточно сильных полях сверхпроводники подразделяются на две большие группы, т. н. сверхпроводники 1-го и 2-го рода. На рис. 3 и 4 в несколько идеализированной форме изображены кривые намагничивания М (Н), типичные для каждой из этих групп. Кривые относятся к случаю длинных цилиндрических образцов, помещенных в поле, параллельное оси цилиндра. При такой геометрии опыта отсутствуют эффекты размагничивания, и картина поэтому является наиболее простой. Начальный прямолинейный участок на этих кривых, где М =—Н/4p, соответствует интервалу значений Н, на котором имеет место эффект Мейснера. Как видно из рисунка, дальнейший ход кривых М (Н) для сверхпроводников 1-го и 2-го рода существенно различается.

  Сверхпроводники 1-го рода, которыми являются все достаточно чистые сверх-проводящие металлические элементы (за исключением и ), теряют С при поле Н = Нк, когда поле скачком проникает в металл и он во всем объеме переходит в нормальное состояние. При этом удельный момент также скачком уменьшается примерно в 105 раз. Критическому полю Нк можно дать простое термодинамическое истолкование. При температуре Т < Тк и в отсутствии поля свободная энергия в сверхпроводящем состоянии c ниже, чем в нормальном н. При включении поля свободная энергия сверхпроводника возрастает на величину 2/8p, равную работе намагничивания, и при Н = Нк сравнивается с н (в силу малости момента в нормальном состоянии н практически не изменяется при включении поля). Т. о., поле Нк определяется из условия равновесия в точке перехода:

  c + Н 2к/8p = н. (1)

  Критическое поле Нк зависит от температуры: оно максимально при Т = 0 и монотонно убывает до нуля по мере приближения к Тк. (Значения Нк для некоторых сверхпроводников приведены в ст. Сверхпроводники.) На рис. 5 изображена фазовая диаграмма на плоскости (Н, Т). Заштрихованная область, ограниченная кривой Нк (Т), соответствует сверхпроводящему состоянию. По измеренной зависимости Нк (Т) могут быть рассчитаны все термодинамические характеристики сверхпроводника 1-го рода. В частности, из формулы (1) непосредственно получается (при дифференцировании по температуре) выражение для теплоты фазового перехода в сверхпроводящее состояние:

, (2)

  где — энтропия единицы объема. Знак Q таков, что теплота поглощается сверхпроводником при переходе в нормальное состояние. Поэтому если разрушение С полем производится при адиабатической изоляции образца, то последний будет охлаждаться.

  Скачкообразный характер фазового перехода в поле (рис. 3) наблюдается только в случае весьма специальной геометрии опыта: длинный цилиндр в продольном поле. При произвольной форме образца и др. ориентациях поля переход оказывается растянутым по более или менее широкому интервалу значений Н: он начинается при Н < Нк и заканчивается, когда поле во всех точках образца превысит Нк. В этом интервале значений Н сверхпроводник 1-го рода находится в т. н. промежуточном состоянии. Он расслаивается на чередующиеся области нормальной и сверхпроводящей фаз, причем так, что поле в нормальной фазе вблизи границы раздела параллельно этой границе и равно Нк. По мере увеличения поля возрастает доля нормальной фазы и происходит уменьшение момента образца. Структура расслоения и характер кривой намагничивания существенно зависят от геометрических факторов. В частности, для пластинки, ориентированной перпендикулярно полю, расслоение начинается уже в слабом поле, гораздо меньшем, чем Нк.

  С свойствами сверхпроводников тесно связаны и особенности протекания в них тока. В силу эффекта Мейснера ток является поверхностным, он сосредоточен в тонком слое, определяемом глубиной проникновения поля. Когда ток достигает некоторой критической величины, достаточной для создания критического поля, сверхпроводник 1-го рода переходит в промежуточное состояние и приобретает электрическое сопротивление.

  К сверхпроводникам 2-го рода относится большинство сверхпроводящих сплавов. Кроме того, сверхпроводниками 2-го рода становятся и сверхпроводящие металлические элементы (сверхпроводники 1-го рода) при введении в них достаточно большого количества примесей. Картина разрушения сверхпроводимости полем является у этих сверхпроводников более сложной. Как видно из рис. 4, даже в случае цилиндрического образца в продольном поле происходит постепенное уменьшение момента на протяжении значительного интервала полей от Нк, когда поле начинает проникать в толщу образца, и до поля Нк, при котором происходит полное разрушение сверхпроводящего состояния. В большинстве случаев кривая намагничивания такого типа является необратимой (наблюдается гистерезис). Величина гистерезиса очень чувствительна к технологии приготовления образцов, и в некоторых случаях путем специальной обработки удается получить образцы с почти обратимой кривой намагничивания. Поле Нк часто оказывается весьма большим, достигая сотен тысяч эрстед (см. статьи Магниты сверхпроводящие и Сверхпроводники). Что же касается термодинамического критического поля Нк, определяемого соотношением (1), то оно для сверхпроводников 2-го рода не является непосредственно наблюдаемой характеристикой. Однако его можно рассчитать, исходя из найденных опытным путем значений свободной энергии в нормальном и сверхпроводящем состояниях в отсутствии поля. Оказывается, что вычисленное таким способом значение Нк попадает в интервал между  и  Т. о., проникновение поля в сверхпроводник 2-го рода начинается уже в поле, меньшем, чем Нк, когда условие равновесия (1) еще нарушено в пользу сверхпроводящего состояния. Понять это парадоксальное на первый взгляд явление можно, если принять во внимание поверхностную энергию границы раздела нормальной и сверхпроводящей фаз. В случае сверхпроводников 1-го рода эта энергия положительна, так что появление границы раздела приводит к проигрышу в энергии. Это существенно ограничивает степень расслоения в промежуточном состоянии. Аномальные свойства сверхпроводников 2-го рода можно качественно объяснить, если принять, что в этом случае поверхностная энергия отрицательна. Именно к такому выводу приводит современная теория сверхпроводимости. При отрицательной поверхностной энергии уже при Н < Нк энергетически выгодным является образование тонких областей нормальной фазы, ориентированных вдоль поля. Возможность реализации такого состояния сверхпроводника 2-го рода была предсказана А. А. Абрикосовым (1952) на основе теории сверхпроводимости В. Л. Гинзбурга и Л. Д. Ландау. Позднее им же был произведен детальный расчет структуры этого состояния. Оказалось, что нормальные области зарождаются в форме нитей, пронизывающих образец и имеющих толщину, грубо говоря, сравнимую с глубиной проникновения поля. При увеличении внешнего поля концентрация нитей возрастает, что и приводит к постепенному уменьшению момента. Т. о., в интервале значений поля от  до , сверхпроводник находится в состоянии, которое принято называть смешанным.

  Фазовый переход в сверхпроводящее состояние в отсутствии поля. Прямые измерения теплоемкости сверхпроводников при Н = 0 показывают, что при понижении температуры теплоемкость в точке перехода Тк испытывает скачок до величины, которая примерно в 2,5 раза превышает ее значение в нормальном состоянии в окрестности Тк (рис. 6). При этом теплота перехода Q = 0, что следует, в частности, из формулы (2) (Нк = 0 при Т = Тк). Т. о., переход из нормального в сверхпроводящее состояние в отсутствии поля является фазовым переходом 2-го рода. Из формулы (2) можно получить важное соотношение между скачком теплоемкости и углом наклона кривой Нк (Т) (рис. 5) в точке Т = Тк:

  ,

  где Сс и Сн— значения теплоемкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.

  Природа сверхпроводимости. Совокупность экспериментальных фактов о С убедительно показывает, что при охлаждении ниже Тк проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие ученые, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом поле — эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта квантования магнитного потока, заключенного внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что поток в этом случае может принимать лишь значения, кратные кванту потока Фо = hc/e*, где е* — заряд носителей сверхпроводящего тока, h — Планка постоянная, с — скорость света. В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что е* = 2e, где е — заряд электрона. Явление квантования потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в поле, большем, чем Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Фо. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (е* = 2e), подтверждает Купера эффект, на основе которого в 1957 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопическую теорию С Согласно Куперу, два электрона с противоположными спинами при определенных условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются Бозе — Эйнштейна статистике. Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают т. н. бозе-конденсацию (см. Квантовая жидкость), и поэтому система куперовских пар обладает свойством сверхтекучести. Т. о., С представляет собой сверхтекучесть электронной жидкости. При Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 kTk, где k — Больцмана постоянная. При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (фонона), в системе возникают возбуждения. При отличной от нуля температуре имеется определенная равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее развитие теории С стимулировало интенсивные теоретические поиски других механизмов С В этом плане особое внимание уделяется т. н. нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, — и более высокой температуры перехода в сверхпроводящее состояние. Явления, родственные С, по-видимому, могут иметь место и в некоторых космических объектах, например в нейтронных звездах.

  Практическое применение сверхпроводимости интенсивно расширяется. Наряду с магнитами сверхпроводящими, сверхпроводящими магнитометрами существует ряд других технических устройств и измерительных приборов, основанных на использовании различных свойств сверхпроводников (см. Криоэлектроника). Построены сверхпроводящие резонаторы, обладающие рекордно высокой (до 1010) добротностью, сверхпроводящие элементы для ЭВМ, перспективно применение сверхпроводников в крупных электрических машинах и т. д.

  Лит.: Де Жен П., С металлов и сплавов, пер. с англ., М., 1968; Линтон Э., С, пер. с англ., 2 изд., М., 1971; С. Сб. ст., М., 1967; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; физический энциклопедический словарь, т. 4, М., 1965, с. 475—82.

  Г. М. Элиашберг.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 16:12:51