Большая Советская Энциклопедия (цитаты)

Реактивный двигатель

Реактивный двигатель (далее Р) двигатель, создающий необходимую для движения силу тяги путем преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р могут преобразовываться различные виды энергии ( ядерная, электрическая, солнечная). Р (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

  Для создания реактивной тяги, используемой Р, необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р; сам Р - преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р ( горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р в качестве первичной чаще всего используется энергия. В этом случае рабочее тело представляет собой раскаленные газы - продукты сгорания топлива. При работе Р энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

  В зависимости от того, используется или нет при работе Р окружающая среда, их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несет на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

  Принцип реактивного движения известен очень давно. Родоначальником Р можно считать шар Герона. Твердотопливные ракетные двигатели - пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвел запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33. В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя  была предложена русским инженером Н. Герасимовым в 1909.

  В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолет и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р имели теоретические работы русских ученых С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского ученого Р. Эно-Пельтри, немецкого ученого Г. Оберта. Важным вкладом в создание ВРД была работа советского ученого Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

  Р имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р используются на летательных аппаратах различных типов. Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолетов во всем мире, их применяют на вертолетах. Эти Р пригодны для полетов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолетах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолетов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолетах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолеты-снаряды ФАУ-1.

  РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твердотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твердотопливные двигатели применяются в качестве ускорителей при взлете самолетов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

  Основные характеристики Р: реактивная тяга, удельный импульс - отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 сек, или идентичная характеристика - удельный расход топлива (количество топлива, расходуемого за 1 сек на 1 н развиваемой Р тяги), удельная масса двигателя (масса Р в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для многих типов Р важными характеристиками являются габариты и ресурс.

  Тяга - сила, с которой Р воздействует на аппарат, оснащенный этим Р, - определяется по формуле

= mWc + c (pc - pn),

где m - массовый расход (расход массы) рабочего тела за 1 сек; c - скорость рабочего тела в сечении сопла; c - площадь выходного сечения сопла; pc - давление газов в сечении сопла; pn - давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга Р зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полета аппарата, оснащенного Р, над уровнем моря, если речь идет о полете в атмосфере Земли. Удельный импульс Р прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объем газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Тяга существующих Р колеблется в очень широких пределах - от долей гс у электрических до сотен тс у жидкостных и твердотопливных ракетных двигателей. Р малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Максимальная тяга ВРД достигает 28 тс (1974). Эти Р, использующие в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Историю и перспективы развития отдельных видов Р и лит. см. в статьях об этих двигателях.

  Л. А. Гильберг.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.12.2024 15:16:54