Большая Советская Энциклопедия (цитаты)

Радиационные дефекты в кристаллах

Радиационные (далее Р)дефекты в структурные повреждения, образующиеся при облучении потоками ядерных частиц и жестким электромагнитным (гамма- и рентгеновским) излучением. Структурные микроповреждения вызывают изменения механических и др. физических свойств Восстановление их свойств, т. е. уничтожение Р. д. в к., осуществляется при нагревании. Изучение Р. д. в к. началось в середине 40-х гг. с развитием реакторной техники. Впервые на возможность разрушения решетки вследствие смещения из их равновесных положений при взаимодействии с быстрыми нейтронами и осколками деления ядер указал Ю. Вигнер в 1942. Тогда же было высказано предположение о том, что такие смещения должны сказываться на свойствах материалов.

  Различают простые и сложные Р. д. в к. Простейшими являются междоузельный и вакансия (см. Дефекты в кристаллах). Такая пара образуется, когда ядерная частица сообщает находящемуся в узле решетки, энергию выше некоторой пороговой. Величина E0 зависит от вещества и равна нескольким десяткам эв. Этой энергии достаточно для разрыва межатомных связей и удаления на некоторое расстояние от узла решетки. И вакансия, и междоузельный обладают высокой подвижностью даже при комнатной температуре. Встретившись в процессе миграции по они могут рекомбинировать, выйти на поверхность либо "закрепиться" на дефектах нерадиационного происхождения (примесных дислокациях, границах зерен, микротрещинах и т.д.). Если энергия, приобретенная превышает в несколько десятков или сотен раз E0, то первично смещенный взаимодействуя с "окружением", вызывает при движении по каскад вторичных смещений.

  В результате слияния простых Р. д. в к. могут образоваться их скопления. Образование скоплений наиболее вероятно в тех случаях, когда облучение производится частицами высоких энергий, порождающими каскадные процессы. При этом даже небольшие первичные скопления могут служить "зародышами", на которых происходит накопление (конденсация) простых дефектов. Рост вакансионных скоплений превращает их в поры. Однако этот процесс не может происходить непрерывно: с одной стороны, он ограничен относительным уменьшением поверхности конденсации вакансий, с другой - условиями теплового равновесия. В металлах сферические поры неустойчивы, они сдавливаются в плоскости одного из наиболее плотных слоев и образуют кольцевые дислокации.

  Наиболее полную информацию о Р. д. в к. можно получить, если облучать материалы при очень низкой температуре (вплоть до нескольких К). Образовавшиеся Р. д. в к. как бы "замораживаются", процесс их миграции по максимально замедляется. При последующем постепенном нагревании часто наблюдается ступенчатая картина восстановления исследуемых свойств материала. Исследование характера и скорости восстановления свойств во времени при температуре наиболее резкого их изменения на границе соседних ступеней (изотермический отжиг) позволяет определить энергию активации движения Р. д. в к. и особенности их превращений. Р. д. в к. наблюдают и непосредственно, например с помощью электронных микроскопов и ионных проекторов.

  Исследование Р. д. в к. имеет большое практическое значение. Различные конструкционные материалы и делящиеся вещества в ядерных реакторах, материалы, находящиеся на борту космических объектов в радиационных поясах Земли, подвергаются воздействию потоков нейтронов, протонов, электронов и g-квантов. Знание типа образующихся Р. д. в к., их превращений и термической стабильности, а также влияния Р. д. в к. на свойства материалов позволяют прогнозировать работу последних под воздействием облучения, открывает пути создания радиационно-стойких материалов.

  Лит.: Конобеевский С. Т., Действие облучения на материалы, М., 1967; Вавилов В. С., Ухин Н. А., Р эффекты в полупроводниках и полупроводниковых приборах, М., 1969; Томпсон М., Дефекты и радиационные повреждения в металлах, пер. с англ., М., 1971.

  Н. А. Ухин.

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 21:00:01