Большая Советская Энциклопедия (цитаты)

Правило вывода

Правило вывода (далее П), правило преобразования некоторой формальной системы, дедуктивное правило, правило-разрешение, регламентирующее допустимые способы переходов от некоторой совокупности утверждений (суждений, высказываний пли выражающих их формул), называемых посылками, к некоторому определенному утверждению (суждению, высказыванию, формуле) — заключению. П, вид посылок и заключения которого указан явно, называют прямым; таково, например, П исчисления высказываний, позволяющее переходить от произвольной конъюнкции к любому ее члену, или П, разрешающее присоединить к произвольному высказыванию любое др. высказывание посредством операции дизъюнкции. Если в посылках и заключении указаны лишь виды выводов, от одного из которых разрешается переходить к другому, то налицо правило косвенного вывода; типичный пример — т. н. теорема о дедукции (правило введения импликации из натурального исчисления высказываний или предикатов), позволяющая от любого вывода A1, A2,..., An-1, An |— перейти (при некоторых естественных ограничениях) к выводу вида A1, A2,..., An-1, An |—An É . П, выражающие способы и приемы содержательных рассуждений, были частично систематизированы еще в рамках традиционной формальной логики (в виде т. н. модусов силлогизма), откуда затем (иногда с видоизменениями) перешли в математическую логику, как, например, правило modus ponens (схема силлогизма, или правило зачеркивания), разрешающее от любой импликации и ее антецедента (посылки) перейти к ее сукцеденту (заключению). Кроме того, П делятся на исходные (основные, постулированные) и выводимые из исходных (посредством некоторых метатеорем). Для исходных П формальных систем (исчислений), являющихся, как и аксиомы, постулатами данной системы, встают обычные для аксиоматических систем проблемы непротиворечивости, полноты и независимости. Поскольку П в той или иной мере выражают отношение логические. следования, а между этим отношением и операцией импликации для большей части логических исчислений существует тесная связь, то такая связь имеется между П и теоремами любого исчисления, в частности между исходными П и аксиомами (например, аналогами упомянутых выше П натурального исчисления являются, соответственно, аксиомы исчисления высказываний А & В É А, А & В É В, А É А Ú В и В É В Ú В).

 

  Лит.: Слупецкий Е., Борковский Л., Элементы математической логики и теория множеств, пер. с польск., М., 1965; О. Ф., Эвристические принципы и логические исчисления, М,, 1970; Смирнов В. А., формальный вывод и логические исчисления, М., 1972. См. также лит. при статьях Аксиоматический метод, Дедукция.

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.12.2024 13:44:21