Большая Советская Энциклопедия (цитаты)

Аэродинамические измерения

Аэродинамические измерения (далее А) измерения скорости, давления, плотности и температуры движущегося воздуха, а также сил, возникающих на поверхности твердого тела, относительно которого происходит движение, и потоков тепла, поступающих к этой поверхности. Большинство практических задач, которые ставят перед аэрогазодинамикой авиация, ракетная техника, турбостроение, промышленное производство и т. д., требует для своего решения проведения экспериментальных исследований. В этих исследованиях на экспериментальных установках — аэродинамических трубах и стендах — моделируется рассматриваемое течение (например, движение самолета с заданными величинами высоты и скорости) и определяются силовые и тепловые нагрузки на исследуемую модель. Соблюдение условий, диктуемых теорией моделирования, позволяет перейти от результатов эксперимента на модели к натуре. Результаты измерений обычно получают в форме зависимостей безразмерных аэродинамических коэффициентов от основных критериев подобия — М-числа, Рейнольдса числа, Прандтля числа и т. д. и в таком виде ими пользуются для определения подъемной силы и сопротивления самолета, нагревания поверхности ракеты и космического корабля и т. п.

  Измерение сил и моментов, действующих на обтекаемое тело. При решении многих задач возникает необходимость измерений суммарных сил, действующих на модель. В аеродинамических трубах для определения величины, направления и точки приложения аэродинамических силы и момента обычно применяют аэродинамические весы. Аэродинамическую силу, действующую на свободно летящую модель, можно определить, измеряя ускорение модели. Ускорения летящих моделей или натурных объектов в летных испытаниях измеряют акселерометрами. Если размер модели не позволяет установить на ней необходимые приборы, то ускорение находят по изменению скорости v модели вдоль траектории.

  Полную аэродинамическую силу (момент), действующую на тело, можно представить как сумму равнодействующих нормальных и касательных сил на его поверхности. Чтобы получить значение нормальных сил, измеряют давления на поверхности модели при помощи специальных, т. н. дренажных, отверстий, соединенных с манометрами резиновыми или металлическими трубками (рис. 1). Тип манометра выбирается в соответствии с величиной измеряемого давления и заданной точностью измерений.

  Если скорость потока, обтекающего модель, так велика, что сказывается сжимаемость газа, то можно оптическими методами найти распределение плотности газа вблизи поверхности модели (см. ниже), а затем рассчитать поле давлений и получить распределение давлений по поверхности модели. Силы, касательные к поверхности модели, обычно определяют расчетом; в некоторых случаях для их измерения применяют специальные весы.

  Измерение скорости газа, обтекающего модель. Скорость газа в аэродинамических трубах и при обтекании самолетов, ракет и летающих моделей в большинстве случаев измеряется трубками (насадками) Прандтля (см. Трубки гидрометрические). Манометры, подключенные к насадку Прандтля, измеряют полное p0 и статическое р давления текущего газа. Скорость несжимаемого газа определяют из уравнения Бернулли:



  (где r — плотность жидкости).

  Если измеряемая скорость больше скорости звука, перед насадком возникает ударная волна и показание манометра, соединенного с трубкой полного давления, будет соответствовать величине полного давления за ударной волной p0` < p0. В этом случае определяют уже не v, а число М по специальной формуле. При измерении сверхзвуковых скоростей обычно пользуются раздельными насадками для измерения статического давления р и полного давления p0` за прямым скачоком уплотнения.

  Существуют также методы, позволяющие измерять скорость газа по изменению количества тепла, отводимого от нагретой проволочки термоанемометра, по соотношению плотностей или температур в заторможенном и текущем газе; по скорости перемещения отмеченных частиц.

  Для измерения относительно малых скоростей в промышленной аэродинамике и метеорологии применяют анемометры, среднюю величину скорости газа, текущего в трубе, можно получить, измеряя его расход специальными расходомерами. Скорость летящего тела можно также вычислить, измеряя время прохождения телом заданного участка траектории, по Доплера эффекту и другими способами.

  Измерение плотности газа. Основные методы исследования поля плотностей газа можно разделить на 3 группы: основанные на зависимости коэффициента преломления света от плотности газа; на поглощении лучистой энергии газом и основанные на послесвечении молекул газа при электрическом разряде. Последние 2 группы методов применимы для исследования плотности газа при низких давлениях. Из методов 1-й группы применяются метод Теплера ("шлирен"-метод) и интерферометрический. В них для измерения плотности пользуются зависимостью между плотностью r газа и коэффициент преломления n света:



  При обтекании тела сжимаемой средой в областях, где имеются возмущения газа, вызванные обтекаемым телом, возникают поля с неоднородным распределением плотности (поля градиентов плотности). Отдельные участки поля с разной плотностью по-разному отклоняют проходящий через них луч света. Часть отклоненных лучей не пройдет через фокус приемника прибора Теплера, т. к. его срезает непрозрачная пластина, т. н. нож Фуко 7 (рис. 2); в результате получается местное изменение освещенности экрана (фотопластинки). Полученные фотографии (рис. 3, а) позволяют качественно анализировать характер обтекания модели; на них хорошо видны области значительных изменений плотности: ударных волн, зон разрежения и т. п. Ударные волны, которые видны на фотографии в виде тонких линий 2, в действительности представляют собой конические поверхности, на которых происходит скачкообразное изменение давления, плотности и температуры воздуха. При обтекании кольцевой поверхности торца цилиндра происходит отрыв пограничного слоя 3 от поверхности конуса.

  Количественные данные о плотности газа и величине изменения (градиенте) плотности можно получить, сравнивая при помощи микрофотометра изменение освещенности экрана, вызванное градиентом плотности в исследуемом течении, с изменением освещенности, вызванной эталонной стеклянной линзой 2 (рис. 3, б), расположенной вне потока аэродинамической трубы: точкам в поле потока и на линзе, имеющим одинаковую освещенность, соответствует равенство коэффициента преломления. По найденным таким образом значениям коэффициент преломления в поле течения вычисляют плотность газа и величину градиента плотности для всего исследуемого поля. Кроме фотометрического метода, для количественного анализа поля плотностей пользуются и другими методами.

  Метод исследования течений газа при помощи интерферометра также основан на зависимости между плотностью газа и коэффициентом преломления. Для этого обычно пользуются интерферометром Маха—Цендера. На полученной фотографии (рис. 4) области равной освещенности соответствуют областям постоянной плотности. Расшифровка фотографий позволяет рассчитать плотность в исследуемой области течения.

  Одно из важных преимуществ оптических методов — возможность исследования газовых течений без помощи зондов и насадков различных типов, являющихся источниками возмущений в потоке.

  Измерение температуры газовых потоков. В потоке, движущемся с большой скоростью, обычно рассматривают 2 температуры: невозмущенного потока Т и заторможенного потока T0 = T + v2/2cp, где cр удельная теплостойкость газа при постоянном давлении в дж/(кг·К), v в м /сек, Т и T0 в К. Очевидно, что T0 ® T при v ® 0. В вязком газе, обтекающем твердую поверхность, скорость на стенке равна нулю и любой неподвижный насадок, установленный в воздушном потоке, измерительную температуру, близкую к температуре торможения T0. В показание прибора войдет ряд поправок, связанных с наличием утечек тепла и т. п.

  При помощи насадков (рис. 5), в которых измерительным элементом обычно служит термопара или термометр сопротивления, удается измерить температуру T0 £ 1500 К. Для измерения более высоких температур заторможенного или текущего газа пользуются оптическими яркостными и спектральными методами.

  Статическую температуру Т можно найти по связи температуры и скорости звука, т. к.



  Для измерения скорости звука в стенке аэродинамической трубы монтируется источник звуковых колебаний известной частоты. На теневой фотографии поля течения будут видны звуковые волны. Скорость звука определяется как a = fe, где е — расстояние между волнами, а f — частота колебаний источника (рис. 6).

  Методы измерения касательных сил (трения) и тепловых потоков на поверхности модели. Для определения касательных напряжений t и теплового потока q можно произвести измерение полей скорости и температуры газа вблизи поверхности и найти искомые величины, пользуясь уравнением Ньютона для напряжений трения



  и уравнением теплопроводности



  где m и l коэффициент динамической вязкости и коэффициент теплопроводности газа,



  градиенты скорости и температуры у поверхности тела в направлении у, нормальном к поверхности. Практически невозможно с достаточной точностью получить значения



  при y ® 0.Поэтому для определения силы трения и потоков тепла на основании измерения полей скорости и температуры в пограничном слое применяют т. н. интегральные методы, в которых сила трения и тепловой поток на рассматриваемом участке поверхности определяются по изменениям толщины пограничного слоя и профилей скорости и температуры.

  Более точные значения t: и q можно получить непосредственным измерением. Для этого на специальных весах измеряют касательную силу DХ на элементе поверхности D; касательные напряжения определяются как



  Аналогично, пользуясь калориметрами различных типов, можно измерить тепловой поток q, поступающий к рассматриваемому элементу поверхности D, и получить удельный тепловой поток



  Для получения распределения тепловых потоков вдоль поверхности тела обычно определяют скорость повышения температуры dT/dt, измеряемой термопарами, установленными в специальных калориметрах, вмонтированных в поверхность модели, или термопарами, непосредственно впаянными в тонкую поверхность модели с относительно малой теплопроводностью.

  Увеличение высоты и скорости полета, а также необходимость моделирования процессов, возникающих за сильными ударными волнами и вблизи поверхности тела, привело к широкому использованию в аэродинамическом эксперименте и других физических методов измерения, например спектральных методов, применяемых в ударных трубах, радиоизотопных для измерения скорости разрушения теплозащитных материалов, методов измерения электропроводности газа, нагреваемого ударной волной, и др.

  Лит.: Попов С. Г., Измерение воздушных потоков, М.—Л., 1947; его же, Некоторые задачи и методы экспериментальной аэромеханики, М., 1952: Пэнк-херст Р., Холдер Д., Техника эксперимента в аэродинамических трубах, пер. с англ., М., 1955; Ладенбург Р., Винклер Д., Ван-Вурис К., Изучение сверхзвуковых явлений при помощи интерферометра, "Вопросы ракетной техники", 1951, в. 1—2; Техника гиперзвуковых исследований, пер. с англ., М., 1964; Аэрофизические исследования сверхзвуковых течений, М.—Л., 1966; Современная техника аэродинамических исследований при гиперзвуковых скоростях, под ред. А. Крилла, пер. с англ., М., 1965.

  М. Я. Юделович.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 16:48:48