| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Полная система функций |  | Полная система функций (далее П), такая система функций Ф = {j(x:)}, определенных на отрезке (a, b), что не существует функции f (x), для которой,  и которая была бы ортогональна ко всем функциям j(х) из Ф, т. е. для которой 
 
  
 при любой функции j(х) из Ф (интегралы понимаются в смысле Лебега, см. Интеграл). Система функций может быть полной на одном отрезке и не быть полной на другом. Например, 1, sinx, cos х,..., sinnx, cosnx,... образуют П на отрезке (0, 2p), но не образуют П на отрезке (—2p, 2p); последнее вытекает из того, что
 
 
  
 
  
 для любой функции j(x) рассматриваемой системы. Для того чтобы система функций с интегрируемым квадратом была П, необходимо и достаточно, чтобы любую функцию с интегрируемым квадратом на отрезке (а, b) можно было с любой степенью точности приблизить в среднем линейными комбинациями функций из этой системы. См. Ортогональная система функций.
 
 
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 11:06:54 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |