|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Позиционные игры | Позиционные игры (далее П) класс бескоалиционных игр (см. Игр теория), в которых принятие игроками решений (т. е. выбор ими стратегий) рассматривается как многошаговый или даже непрерывный процесс. Другими словами, в П в ходе процесса принятия решений субъект проходит последовательность состояний, в каждом из которых ему приходится принимать некоторое частичное решение. Поэтому в П стратегии игроков можно понимать как функции, ставящие в соответствие каждому информационному состоянию игрока (т. е. состоянию, характеризуемому информацией игрока о положении дел в игре в данный момент) выбор некоторой возможной в этом состоянии альтернативы (среднее описание игры в шахматы в ст. Игр теория).
Переходы игрока из одного информационного состояния в другое могут сопровождаться получением или утратой им информации об уже имевших место информационных состояниях (как самого игрока, так и других игроков) и выбиравшихся в них альтернативах. Полное описание этого называется информацией игрока в П Информация игрока о самом себе (т. е. о собственных бывших состояниях и альтернативах) называется его памятью. Особенности информации и памяти игроков в игре могут позволить упрощать характеризацию ее ситуаций равновесия и сужать область их поисков. Так, если П с конечным числом информационных состояний есть игра с полной информацией (т. е. в любой ее момент каждый игрок знает все бывшие информационные состояния и сделанные в них выборы), то в ней имеются ситуации равновесия в чистых стратегиях, т. е. без обращения к смешанным стратегиям. При переходе к П с бесконечным множеством информационных состояний (например, два игрока поочередно называют десятичные цифры a1, а2, a3, a4,... и если получающееся в результате число 0, a1a2a3a4... будет принадлежать некоторому множеству, то первый игрок выигрывает единицу; в противном случае единицу выигрывает второй игрок) это утверждение теряет силу, и могут наблюдаться явления парадоксального характера, математически весьма сложные. Если в П с конечным числом информационных состояний некоторый игрок имеет полную память (т. е. знает все бывшие собственные информационные состояния и выборы в них), то он может без ущерба для себя ограничиться стратегиями поведения, в которых выборы альтернатив в различных информационных состояниях могут быть случайными (рандомизированными), но должны быть стохастически независимыми в совокупности.
К числу П (с непрерывным множеством информационных состояний) можно отнести дифференциальные игры. Как теорию одного из классов П с одним игроком можно понимать динамическое программирование. Естественно интерпретировать как П задачи многошаговых (секвенциальных) статистических решений. Учет получаемой или утрачиваемой игроком в П информации обусловливает связь теории игр с информации теорией.
Лит.: П. (Сб. ст.), М. 1967.
Н. Н. Воробьев.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 22:59:41
|
|
|
|
|
|
|
|
|
|