|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Подшипник качения | Подшипник качения (далее П), опора вращающейся части механизма или машины, работающая в условиях преобладающего трения качения, обычно состоящая из внутреннего и наружного колец, тел качения и сепаратора, разделяющего тела качения и направляющего их движение (рис. 1). По форме тел качения П могут быть шариковыми и роликовыми с различной формой роликов. На наружной поверхности внутреннего кольца и внутренней поверхности наружного выполняются дорожки качения, геометрическая форма которых зависит от применяемых в данном подшипнике тел качения. Иногда в целях уменьшения радиальных габаритов применяют П без одного из колец, дорожка качения при этом выполняется непосредственно на валу или на поверхности корпусной детали (рис. 2). Некоторые П (например, игольчатые) могут не иметь сепаратора. Такие П отличаются большим числом тел качения, а следовательно, и большей грузоподъемностью. Предельная частота вращения бессепараторных подшипников ниже из-за повышенных моментов трения. По направлению действия воспринимаемой нагрузки П разделяют на четыре группы: радиальные — предназначены для восприятия только радиальных (например, роликоподшипники с игольчатыми роликами) или радиальных и ограниченных осевых нагрузок (например, шарикоподшипники радиальные однорядные); радиально-упорные — для восприятия комбинированных, т. е. радиальных и осевых, нагрузок (например, подшипники с коническими роликами); упорно-радиальные — для восприятия в основном осевых и незначительных радиальных нагрузок (имеют ограниченное применение); упорные — для восприятия только осевых нагрузок. П могут иметь один или несколько рядов тел качения и различную конструкцию. По комплексу признаков П разделяются на типы (рис. 3). Кроме П основных типов, существуют их конструктивные разновидности (некоторые из них показаны на рис. 4). Радиально-упорные шарикоподшипники изготавливают с различными номинальными углами контакта (обычно 12, 26, 36°). С увеличением угла контакта возрастают осевая жесткость и способность воспринимать осевые нагрузки, но снижаются радиальная жесткость и быстроходность. При установке радиально-упорных сдвоенных П повышаются грузоподъемность и жесткость опоры, а также точность вращения вала. Шарикоподшипники с разъемным внутренним или наружным кольцом воспринимают осевые нагрузки любого направления и точно фиксируют осевое положение валов. Конструкция П может отличаться в зависимости от способа крепления (на валу или в корпусе). Так, П, предназначенные для крепления на конических шейках валов, имеют конусное отверстие. Сферические П на закрепительных втулках устанавливают на гладких (без бортов) участках валов. Наружные кольца радиальных шарикоподшипников иногда выполняют с канавкой под установочную шайбу, применение которой упрощает осевое крепление в корпусе. Кольца и тела качения изготавливают из высокоуглеродистых закаливаемых до высокой твердости, реже из малоуглеродистых цементуемых сталей. Наиболее распространены стали ШХ15. В некоторых случаях для П применяют нержавеющие или теплостойкие стали. Сепараторы П массовых серий изготавливают из малоуглеродистой стали, реже из нержавеющей стали и латуни (штамповкой из ленты или листов). Для изготовления массивных сепараторов П, предназначенных для работы при высоких скоростях, используют латунь, чугун, бронзу, дюралюмин, графитизированную сталь, текстолит, а также др. пластмассы.
Точность изготовления П регламентирована классами: 0 (нормальный); 6; 5; 4; 2 (в порядке повышения точности). Во всех странах принят единый стандарт на габариты П Для маркировки П применяют цифровые обозначения, 1-я и 2-я цифры (считая справа) для П с внутренним диаметром от 20 до 495 мм соответствуют этому диаметру, деленному на 5. 3-я и 7-я цифры для диаметров выше 9 мм обозначают серию наружных диаметров и ширин. Стандартами предусмотрены сверхлегкие, особолегкие, легкие, средние и тяжелые серии подшипников по диаметрам; узкие, нормальные, широкие и особоширокие серии — по ширинам. Основное распространение имеют легкие узкие (обозначаются цифрой 2 на 3-м месте и 0 на 7-м месте) и средние узкие серии (3 на 3-м месте и 0 на 7-м). 4-я цифра обозначает тип подшипника (0 — радиальный шариковый; 1 — радиальный шариковый двухрядный сферический; 2— радиальный с короткими цилиндрическими роликами; 3 — радиальный роликовый двухрядный сферический; 4 — радиальный роликовый с длинными цилиндрическими роликами или игольчатый; 5 — радиальный роликовый с витыми роликами; 6 — радиально-упорный шариковый; 7 — роликовый конический; 8 — упорный шариковый; 9 — упорный роликовый), 5-я и 6-я цифры обозначают конструктивные особенности подшипника. В условном обозначении П нули левее последней значащей цифры не указываются. Класс точности маркируется слева от условного обозначения через тире. П, отличающиеся от стандартных конструкцией, материалами, технологией, термообработкой, отмечаются дополнительными знаками.
Изготовление П в заводских условиях было начато в 1883 в (см. Подшипниковая промышленность). В СССР выпускаются подшипники с внутренними диаметрами от долей мм до 1345 мм и массой от долей грамма до 4 т. П применяют в различных машинах и приборах, в которых они работают в широком диапазоне частот вращения (до 200 000 об/мин) при температурах до 1000 °С; созданы шарикоподшипники, способные работать в глубоком вакууме. Широкое применение П обусловлено рядом их преимуществ по сравнению с подшипниками скольжения: меньшим моментом сопротивления вращению, особенно в начале движения, а также при малых и средних частотах вращения; большей несущей способностью на единицу ширины подшипника; полной взаимозаменяемостью; простотой эксплуатации; меньшим расходом смазочных материалов и цветных металлов; более низкими требованиями к материалам и термообработке валов. К недостаткам П относятся: ограниченный ресурс, особенно при больших скоростях; большое рассеивание сроков службы; высокая стоимость при мелкосерийном и индивидуальном производстве; большие радиальные габариты; меньшая способность демпфировать вибрации и удары, чем у подшипников скольжения.
Энергетические потери в П представляют собой результат сложного физического процесса. Момент сопротивления определяется одновременным действием ряда явлений: проскальзыванием тел качения по площадкам контакта и гнездам сепаратора, потерями на внутреннее трение в материале контактирующих тел (упругий гистерезис), скольжением массивного сепаратора по центрирующим бортам колец, сопротивлением смазки (см. Смазка в технике) и внешней среды (см. Трение внешнее). Момент сопротивления можно приближенно определять, используя условное понятие о приведенном безразмерном коэффициентом трения fnp: M = 0,5×fnp×d, где Р — нагрузка на подшипник; d — диаметр отверстия в подшипнике.
Величина fnp = 0,0015—0,02 (меньшие значения принимают для шарикоподшипников, работающих при радиальных нагрузках и жидкой смазке). Для смазки П применяют различные смазочные материалы: жидкие масла, пластичные смазки и в особых случаях твердые материалы. Наиболее благоприятные условия для работы П обеспечивают жидкие масла, для которых характерны такие признаки, как стабильность при работе, сравнительно небольшое сопротивление вращению, способность хорошо отводить тепло, очищать подшипники от продуктов износа. Пластичные смазки лучше, чем жидкие масла, защищают поверхности от коррозии, для удержания их в узле не требуется сложных уплотнений.
П рассчитывают на долговечность (ресурс) по динамической грузоподъемности и на статическую грузоподъемность. Методы расчета в СССР стандартизированы и соответствуют рекомендациям СЭВ и ИСО (Международной организации по стандартизации). Под долговечностью П понимается расчетный срок службы, выраженный числом оборотов или числом часов работы, в течение которых не менее 90% из данной группы подшипников при одинаковых условиях должны отработать без появления признаков усталости металла (выкрашивания). Связь между расчетным ресурсом в млн. оборотов (L) или в часах (Lh) и эквивалентной динамической нагрузкой (Р) устанавливается эмпирическими зависимостями: млн. оборотов; ч, где С — динамическая грузоподъемность подшипника, постоянная радиальная или осевая (для упорных и упорно-радиальных П) нагрузка, которую группа идентичных П при неподвижном наружном кольце сможет выдержать в течение расчетного срока службы в 1 млн. оборотов вращающегося внутреннего кольца; Р — эквивалентная динамическая нагрузка, постоянная радиальная или осевая (для упорных и упорно-радиальных) нагрузка, которая при приложении ее к П с вращающимся внутренним и неподвижным наружным кольцом обеспечит такой же расчетный срок службы, как и при действительных условиях нагружения и вращения (значение Р определяется по формулам, в которых комбинированная нагрузка приводится к радиальной или осевой, эквивалентной по своему разрушающему действию); a — показатель степени, равный 3 для шарикоподшипников и 3,33 для роликоподшипников; n — частота вращения в об/мин. По статической нагрузке подбирают или проверяют П, воспринимающие внешнюю нагрузку в неподвижном состоянии или при вращении с частотой не более 1 об/мин.
Под статической грузоподъемностью (0) принято понимать такую нагрузку на П, от действия которой в наиболее нагруженной зоне контакта возникает общая остаточная деформация тел качения и колец, не превышающая 0,0001 диаметра тела качения. Значения динамической и статической грузоподъемности в кгс (н) указывают в каталогах для каждого типоразмера подшипника. По мере повышения качества П эти значения увеличиваются. Значительное повышение долговечности П возможно, например, в результате совершенствования технологии, применения электрошлакового, вакуумно-дугового и двойного (электрошлакового и вакуумно-дугового) переплавов сталей.
Лит.: Подшипники качения. Справочное пособие, М., 1961; Детали машин. Атлас конструкций, под ред. Д. Н. Решетова, 3 изд., М., 1968; Спришевский А. И., Подшипники качения, М., 1969; Детали машин. Расчет и конструирование. Справочник, под ред. Н. С. Ачеркана, 3 изд., т. 1, М., 1968; Подшипники качения. Каталог-справочник, М., 1972: ГОСТ 18854-73; ГОСТ 18855-73.
В. Н. Иванов.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 23.12.2024 00:25:09
|
|
|
|
|
|
|
|
|
|