|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Перегиба точка | Перегиба точка (далее П) точка М плоской кривой, обладающая следующими свойствами: в точке М кривая имеет единственную касательную; в достаточно малой окрестности точки М кривая расположена внутри одной пары вертикальных углов, образуемых касательной и нормалью. Примером П является точка (0, 0) кривой у = x3. Пусть кривая задана уравнением y = f (x), где функция f (x) имеет непрерывную вторую производную f`"(x). Если точка с координатами (х0, f (x0)) является П, то f"(x) = 0 (отсюда следует, что в П кривизна линии равна нулю); обратное утверждение неверно. Например, последнее равенство выполняется для кривой у = x4 в точке (0, 0), хотя эта точка не является П Полное исследование вопроса, будет ли данная точка кривой П, требует привлечения производных более высоких порядков (если они существуют) или других дополнительных рассмотрений. (см. рис.)
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 25.12.2024 11:13:28
|
|
|
|
|
|
|
|
|
|