| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Ошибок теория |  | Ошибок теория (далее О) раздел математической статистики, посвященный построению уточненных выводов о численных значениях приближенно измеренных величин, а также об ошибках (погрешностях) измерений. Повторные измерения одной и той же постоянной величины дают, как правило, различные результаты, так как каждое измерение содержит некоторую ошибку. Различают 3 основных вида ошибок: систематические, грубые и случайные. Систематические ошибки все время либо преувеличивают, либо преуменьшают результаты измерений и происходят от определенных причин (неправильной установки измерительных приборов, влияния окружающей среды и т. д.), систематически влияющих на измерения и изменяющих их в одном направлении. Оценка систематических ошибок производится с помощью методов, выходящих за пределы математической статистики (см. Наблюдений обработка). Грубые ошибки возникают в результате просчета, неправильного чтения показаний измерительного прибора и т. п. Результаты измерений, содержащие грубые ошибки, сильно отличаются от других результатов измерений и поэтому часто бывают хорошо заметны. Случайные ошибки происходят от различных случайных причин, действующих при каждом из отдельных измерений непредвиденным образом то в сторону уменьшения, то в сторону увеличения результатов. 
 О занимается изучением лишь грубых и случайных ошибок. Основные задачи О: разыскание законов распределения случайных ошибок, разыскание оценок (см. Статистические оценки) неизвестных измеряемых величин по результатам измерений, установление погрешностей таких оценок и устранение грубых ошибок.
 
 Пусть в результате n независимых равноточных измерений некоторой неизвестной величины а получены значения x1, x2,..., xn. Разности
 
 d1 = x1 — a,…, dn = xn — a
 
 называются истинными ошибками. В терминах вероятностной О все di трактуются как случайные величины; независимость измерений понимается как взаимная независимость случайных величин d1,..., dn. Равноточность измерений в широком смысле истолковывается как одинаковая распределенность: истинные ошибки равноточных измерений суть одинаково распределенные случайные величины. При этом математическое ожидание случайных ошибок b = Ed1 =...= Еdn называется систематической ошибкой, а разности d1 — b,..., dn — b — случайными ошибками. Таким образом, отсутствие систематической ошибки означает, что b = 0, и в этой ситуации d1,..., dn суть случайные ошибки. Величину
  , где а — квадратичное отклонение, называют мерой точности (при наличии систематической ошибки мера точности выражается отношением  . Равноточность измерений в узком смысле понимается как одинаковость меры точности всех результатов измерений. Наличие грубых ошибок означает нарушение равноточности (как в широком, так и в узком смысле) для некоторых отдельных измерений. В качестве оценки неизвестной величины а обычно берут арифметическое среднее из результатов измерений 
 
  , 
 а разности D1 = x1 —
  ,..., Dn = xn —  называются кажущимися ошибками. Выбор  в качестве оценки для а основан на том, что при достаточно большом числе n равноточных измерений, лишенных систематической ошибки, оценка  с вероятностью, сколь угодно близкой к единице, сколь угодно мало отличается от неизвестной величины а (см. Больших чисел закон); оценка  лишена систематической ошибки (оценки с таким свойством называются несмещенными); дисперсия оценки есть 
 D
  = E (  — а)2 = s2/n. 
 Опыт показывает, что практически очень часто случайные ошибки di подчиняются распределениям, близким к нормальному (причины этого вскрыты так называемыми предельными теоремами теории вероятностей). В этом случае величина
  имеет мало отличающееся от нормального распределение, с математическим ожиданием а и дисперсией s2/n. Если распределения di в точности нормальны, то дисперсия всякой другой несмещенной оценки для а, например медианы, не меньше D  . Если же распределение di отлично от нормального, то последнее свойство может не иметь места. 
 Если дисперсия s2 отдельных измерений заранее известна, то для ее оценки пользуются величиной
 
 
  
 (Es2 = s2, т. е. s2 — несмещенная оценка для s2), если случайные ошибки di имеют нормальное распределение, то отношение
 
 
  
 подчиняется Стьюдента распределению с n — 1 степенями свободы. Этим можно воспользоваться для оценки погрешности приближенного равенства а "
  (см. Наименьших квадратов метод). 
 Величина (n — 1) s2/s2 при тех же предположениях имеет распределение c2 (см. "Хи-квадрат" распределение) с n — 1 степенями свободы. Это позволяет оценить погрешность приближенного равенства s " s. Можно показать, что относительная погрешность |s — s|Is не будет превышать числа q с вероятностью
 
 w =  (z2, n — 1) —  (z1, n — 1),
 
 где  (z, n — 1) — функция распределения c2,
 
 
  ,  . 
 Лит.: Линник Ю. В., Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений, 2 изд., М., 1962; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968.
 
 Л. Н. Большев.
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 11:07:04 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |