Большая Советская Энциклопедия (цитаты)

Оптоэлектроника

Оптоэлектроника (далее О), направление электроники, охватывающее вопросы использования оптических и электрических методов обработки, хранения и передачи информации. О возникла как этап развития радиоэлектроники и вычислительной техники, тенденцией которых является непрерывное усложнение систем при возрастании их информационных и технико-экономических показателей (увеличение надежности, быстродействия, уменьшение размеров и веса, см. Микроэлектроника). Идея использования света для обработки и передачи информации уже давно реализована: большая группа фотоприемников (фотоэлементов, фотоэлектронных умножителей, фоторезисторов, фотодиодов, фототранзисторов и пр.) служит для преобразования световых сигналов в электрические. Существуют также и преобразователи последовательности электрических сигналов в видимое изображение (см. Электроннолучевые приборы). Вся же обработка информации в электрических трактах радиоэлектронных устройств осуществлялась вакуумными и полупроводниковыми приборами.

  О отличается от вакуумной и полупроводниковой электроники наличием в цепи сигнала оптического звена или оптической (фотонной) связи. Достоинства О определяются в первую очередь преимуществами оптической связи по сравнению с электрической, а также теми возможностями, которые открываются в результате использования разнообразных физических явлений, обусловленных взаимодействием световых полей с твердым телом.

  Из-за электрической нейтральности фотонов в оптическом канале связи не возбуждаются электрические и поля, сопутствующие протеканию электрического тока. Иными словами, фотоны не создают перекрестных помех в линиях связи и обеспечивают полную электрическую развязку между передатчиком и приемником, что принципиально недостижимо в цепях с электрической связью. Передача информации с помощью светового луча (см. Модуляция света) не сопровождается накоплением и рассеиванием электромагнитной энергии в линии. Отсюда — отсутствие существенного запаздывания сигнала в канале связи, высокое быстродействие и минимальный уровень искажения передаваемой информации, переносимой сигналом.

  Высокая частота оптических колебаний (1014—1015 гц) обусловливает большой объем передаваемой информации и быстродействие. Соответствующая оптической частоте малая длина волны (до 10–4—10–5 см) открывает пути для микроминиатюризации передающих и приемных устройств О, а также линии связи. Минимальные поперечные размеры светового луча — порядка длины волны l. Информационная емкость такого канала вследствие его большой широкополосности чрезвычайно высока.

  Идеи О возникли еще в 1955, но известные в то время средства для взаимного преобразования электрических и оптических сигналов и для осуществления оптической связи не обеспечивали необходимых эффективности, быстродействия, мощности светового потока, возможности микроминиатюризации. О начала интенсивно развиваться лишь с 1963—65, после того как появились лазеры, полупроводниковые светоизлучающие диоды и волоконная оптика.

  Основные элементы О: источники света (лазеры, светодиоды), оптические среды (активные и пассивные) и фотоприемники. Эти элементы применяются как в виде различных комбинаций, так и в виде автономных устройств и узлов с самостоятельными частными задачами. Существует 2 пути развития О: оптический, основу которого составляет когерентный луч лазера (когерентная оптоэлектроника), и электрооптический, основанный на фотоэлектрическом преобразовании оптического сигнала (оптроника). Сущность оптроники состоит в замене электрических связей в цепях оптическими. С когерентной О связаны новые принципы и методы построения больших систем вычислительной техники, оптические связи, запоминания и обработки информации, не имеющих аналогов в традиционной радиоэлектронике. Сюда относятся голография с ее огромными возможностями записи, хранения и отображения больших массивов информации, ЭВМ с параллельным вводом информации в виде картин (машины с картинной логикой), сверхбыстродействующие вычислительные системы со скоростью обработки информации ~109—1011 операций в 1 сек, устройства памяти большой емкости (1010—1012 бит), лазерное телевидение и прочие. Большие перспективы открывает когерентная О перед многоканальной оптической связью.

  Функциональная когерентная О, или интегральная оптика, является оптическим аналогом интегральной микроэлектроники. Ее основу составляют диэлектрические микроволноводы на жесткой подложке. Они служат для передачи светового сигнала от одного функционального узла к другому и его преобразования.

  В оптронике используются специфические характеристики, получаемые в результате различных комбинаций источников света, передающих, управляющих сред и фотоприемников. Преобразование сигналов в оптронике осуществляется параметрическим методом (см. Параметрическое возбуждение и усиление электрических колебаний). Оптронные схемы по структуре значительно проще и функционально более емкие, чем полупроводниковые. Это обусловлено: 1) гальванической развязкой, вносимой оптической связью в электрические цепи, что снимает проблему их согласования по импедансам, напряжениям, частотам, повышает устойчивость; 2) простотой преобразования электрического сигнала в оптический (световой) и снова в электрический и оптического сигнала в оптический через этап электрического преобразования (оптронная цепь может управляться и управлять как электрическими, так и оптическими сигналами).

  Основной структурный элемент оптроники — оптрон. Оптроны выполняют разнообразные схемные задачи: усиление и преобразование электрических и оптических сигналов, переключения, модуляции и др. Оптроны могут сочетать логические функции с функциями отображения и индикации, если источник излучения работает в видимой части спектра.

  Лит.: Свечников С. В., Элементы оптоэлектроники, М., 1971; Фотоэлектрические явления в полупроводниках и оптоэлектроника, сборник ст., под ред. Э. И. Адировича, Таш., 1972; Георгобиани А. Н., Широкозонные полупроводники A и перспективы их применения, "Успехи физических наук", 1974, т. 113, в. 1.

  С. В. Свечников.

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.12.2024 20:47:19