| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Неприводимый многочлен |  | Неприводимый многочлен (далее Н), многочлен, не разлагающийся на множители более низкой степени. Возможность разложить многочлен на множители (и свойство неприводимости) зависит от того, какие числа допускаются в качестве коэффициентов многочлена. Так, многочлен x3 + 2 неприводим, если в качестве коэффициентов допускать только рациональные числа, но разлагается в произведение двух Н 
 
  
 если в качестве коэффициентов брать любые действительные числа, и в произведение трех множителей
 
 
  
 если коэффициентами будут числа комплексные. В общем случае понятие неприводимости определяется для многочленов с коэффициентами, принадлежащими произвольному полю (см. Поле алгебраическое). Часто Н называют многочлен с рациональными коэффициентами, не разлагающийся на множители более низкой степени также с рациональными коэффициентами.
 
 Лит.: Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968.
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 16:44:37 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |