| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Непараметрические методы |  | Непараметрические методы  (далее Н)в математической статистике, методы непосредственной оценки теоретического распределения вероятностей и тех или иных его общих свойств (симметрии и т.п.) по результатам наблюдений. Название Непараметрические методы подчеркивает их отличие от классических (параметрических) методов, в которых предполагается, что неизвестное теоретическое распределение принадлежит какому-либо семейству, зависящему от конечного числа параметров (например, семейству нормальных распределений), и которые позволяют по результатам наблюдений оценивать неизвестные значения этих параметров и проверять те или иные гипотезы относительно их значений. Разработка Непараметрические методы является в значительной степени заслугой советских ученых. 
 В качестве примера Непараметрические методы можно привести найденный А. Н. Колмогоровым способ проверки согласованности теоретических и эмпирических распределений (так называемый критерий Колмогорова). Пусть результаты n независимых наблюдений некоторой величины имеют функцию распределения  (x) и пусть n (x) обозначает эмпирическую функцию распределения (см. Вариационный ряд), построенную по этим n наблюдениям, a Dn - наибольшее по абсолютной величине значение разности n (x) -  (x). Случайная величина
 
 
  
 имеет в случае непрерывности  (x) функцию распределения n (l), не зависящую от  (x) и стремящуюся при безграничном возрастании n к пределу
 
 
  
 Отсюда при достаточно больших n, для вероятности pn,l. Неравенства
 
 
  
 получается приближенное выражение
 
 pn,l " 1 - К (l).     (*)
 
 Функция К (l) табулирована. Ее значения для некоторых А приведены в табл.
 
 Таблица функции К (l)
 
   | l
 
 | 0,57
 
 | 0,71
 
 | 0,83
 
 | 1,02
 
 | 1,36
 
 | 1,63
 
 |   | К (l)
 
 | 0,10
 
 | 0,30
 
 | 0,50
 
 | 0,75
 
 | 0,95
 
 | 0,99
 
 |  Равенство (*) следующим образом используется для проверки гипотезы о том, что наблюдаемая случайная величина имеет функцию распределения  (x): сначала по результатам наблюдений находят значение величины Dn, а затем по формуле (*) вычисляют вероятность получения отклонения n от , большего или равного наблюденному. Если указанная вероятность достаточно мала, то в соответствии с общими принципами проверки статистических гипотез (см. Статистическая проверка гипотез) проверяемую гипотезу отвергают. В противном случае считают, что результаты опыта не противоречат проверяемой гипотезе. Аналогично проверяется гипотеза о том, получены ли две независимые выборки, объема n1 и n2 соответственно, из одной и той же генеральной совокупности с непрерывным законом распределения. При этом вместо формулы (*) пользуются тем, что вероятность неравенства
 
 
  
 как это было установлено Н. В. Смирновым, имеет пределом К (l), здесь Dn1, n2 есть наибольшее по абсолютной величине значение разности n1 (х) - n2 (х).
 
 Другим примером Непараметрические методы могут служить методы проверки гипотезы о том, что теоретическое распределение принадлежит к семейству нормальных распределений. Отметим здесь лишь один из этих методов - так называемый метод выпрямленной диаграммы. Этот метод основывается на следующем замечании. Если случайная величина Х имеет нормальное распределение с параметрами a и s, то
 
 
  
 где Ф-1 - функция, обратная нормальной:
 
 
  
 Т. о., график функции у = Ф-1( (x)) будет в этом случае прямой линией, а график функции у = Ф-1(n (x)) - ломаной линией, близкой к этой прямой (см. рис.). Степень близости и служит критерием для проверки гипотезы нормальности распределения  (x).
 
 
 
 Лит.: Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большее Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968.
 
 Ю. В. Прохоров.
 
 
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 14:27:32 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |