Большая Советская Энциклопедия (цитаты)

Нелинейная квантовая теория поля

Нелинейная квантовая теория поля (далее Н) общее название теорий, в которых используются нелинейные уравнения для операторов, описывающих квантованные поля. Физически это соответствует учету самовоздействия поля. В одних теориях самовоздействие поля постулируется как нечто изначальное (такие теории и называются обычно нелинейными), в других - оно "индуцируется" некоторым промежуточным взаимодействием. В квантовой электродинамике, например, нелинейность, "индуцированная" взаимодействием между фотонами посредством виртуальных электронно-позитронных пар, должна приводить к наблюдаемым (но еще не обнаруженным ввиду их малости) эффектам рассеяния света на свете и на поле заряженных частиц (см. Квантовая теория поля).

  В Н можно заметить две тенденции. Во-первых, исследуется, к каким результатам приводит учет нелинейности для конкретных физических полей. Высказываются предположения, что, подобно тому как нелинейное обобщение классической электродинамики, предложенное М. Борном и Л. Инфельдом, разрешило проблему так называемой кулоновской расходимости (энергия кулоновского поля точечной частицы в обычной электродинамике оказывается бесконечной), учет нелинейности, "индуцированной", в частности, гравитацией, может устранить расходимости в квантовой теории поля.

  Вторая тенденция, получившая известность в основном после работ групп В. Гейзенберга (ФРГ) и Д. Д. Иваненко (СССР), шире: делаются попытки искать нелинейные уравнения не для конкретных полей, а для материи в целом ("праматерии"), а конкретные физические поля рассматривать как обусловленные самовоздействием "праматерии" различные возможные ее состояния.

  Указанные тенденции пока только намечены. Н еще не получила достаточного развития, хотя важность учета нелинейностей в физике элементарных частиц становится все более очевидной.

  Лит.: Н, Сб. статей, перевод, под ред. Д. Д. Иваненко, М., 1959 (Проблемы физики); Нелокальные, нелинейные и неренормируемые теории поля, Препринт ОИЯИ 2-5400, Дубна, 1970.

  В. И. Григорьев.

 


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 24.01.2025 20:52:40