Большая Советская Энциклопедия (цитаты)

Нейтрино

Нейтрино (далее Н) (итал. neutrino, уменьшительное от neutrone — нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином 1/2 (в единицах постоянной Планка ) и исчезающе малым, по-видимому, нулевым, моментом. Н принадлежит к группе лептонов, а по своим статистическим свойствам относится к классу фермионов. Название "Н" применяется к двум различным элементарным частицам — к электронному (ne) и к мюонному (nm) Н Электронным называется Н, взаимодействующее с др. частицами в паре с электроном е- (или позитроном е+), мюонным — Н, взаимодействующее в паре с мюоном (m-, m+). Оба вида Н имеют соответствующие античастицы: электронное



и мюонное



антинейтрино. Электронные и мюонные Н принято различать с помощью сохраняющихся аддитивных лептонных квантовых чисел (лептонных зарядов) Le и Lm, при этом принимается, что Le = + 1, Lm = 0 для nе и Le = - 1, Lm = 0 для , Le = 0, Lm = + 1 для nm и Le = 0, Lm = — 1 для . В отличие от др. частиц, Н обладают удивительным свойством иметь строго определенное значение спиральности l — проекции спина на направление импульса: Н имеют левовинтовую спиральность (l = —1/2), т. е. спин направлен против направления движения частицы, антинейтрино — правовинтовую (l = + 1/2), т. е. спин направлен по направлению движения.

  Н испускаются при бета-распаде ядер, К-захвате, захвате m-ядрами и при распадах нестабильных элементарных частиц, главным образом пи-мезонов (p+, p-), К-мезонов и мюонов. Источниками Н являются также термоядерные реакции в звездах.

  Н принимают участие лишь в слабом взаимодействии и гравитационном взаимодействии и не участвуют в электромагнитном и сильном взаимодействиях. С этим связана крайне высокая проникающая способность Н, позволяющая этой частице свободно проходить сквозь Землю и Солнце.

  История открытия нейтрино

  Гипотеза Паули. Открытие Н принадлежит к числу наиболее ярких и вместе с тем трудных страниц в физике 20 в. Прежде чем стать равноправным членом семьи элементарных частиц, Н долгое время оставалось гипотетической частицей.

  Впервые в экспериментальной физике Н проявилось в 1914, когда английский физик Дж. Чедвик обнаружил, что электроны, испускаемые при b-распаде ядер (в отличие от a-частиц и g-квантов, испускаемых при др. видах радиоактивных превращений), имеют непрерывный энергетический спектр. Это явление находилось в явном противоречии с теорией квантов, требовавшей, чтобы при квантовых переходах между стационарными состояниями ядер выделялась дискретная порция энергии (постулат Бора). Поскольку при испускании a-частиц и g-квантов это требование выполнялось, возникло подозрение, что при b-распаде нарушается закон сохранения энергии.

  В 1930 швейцарский физик В. Паули в письме участникам семинара в Тюбингене сообщил о своей "отчаянной попытке" "спасти" закон сохранения энергии. Паули высказал гипотезу о существовании новой электрически нейтральной сильно проникающей частицы со спином 1/2 и с массой £ 0,01 массы протона, которая испускается при b-распаде вместе с электроном, что и приводит к нарушению однородности спектра b-электронов за счет распределения дискретной порции энергии (соответствующей переходу ядра из одного состояния в другое) между обеими частицами. После открытия в 1932 тяжелой нейтральной частицы — нейтрона, итальянский физик Э. Ферми предложил называть частицу Паули "нейтрино". В 1933 Паули сформулировал основные свойства Н в их современном виде. Как выяснилось позже, эта гипотеза "спасла" не только закон сохранения энергии, но и законы сохранения импульса и момента количества движения, а также основные принципы статистики частиц в квантовой механике.

  Теория b-распада Гипотеза Паули естественным образом вошла в теорию b-распада, созданную в 1934 и позволившую описать явления электронного (b-) и позитронного (b+) распадов и К-захвата. Появилась теоретическая возможность ввести два разных Н: антинейтрино, рождающееся в паре с электроном, и Н, рождающееся в паре с позитроном.

  В теории b- (b+)-распад есть превращение нейтрона n (протона р) внутри ядра в протон (нейтрон):



С помощью теории была рассчитана форма спектра b-электронов, оказавшаяся вблизи верхней границы энергии b-электронов очень чувствительной к массе mn Н Сравнение теоретической формы спектра с экспериментальной показало, что масса Н много меньше массы электрона (и, возможно, равна нулю). Теория объяснила все основные черты b-распада, и ее успех привел физиков к признанию Н Однако сомнения в существовании этой частицы еще оставались.

  Эксперименты по обнаружению нейтрино. Известны две возможности экспериментального обнаружения Н Первая — наблюдение обратного b-распада — впервые рассмотрена Х. Бете и Р. Пайерлсом в 1934. Обратным b-распадом называются реакции (существование которых следует из теории


происходящие как на свободных, так и на связанных в ядрах нуклонах. Оценка вероятности (сечения) поглощения Н дала поразительный результат: в твердом веществе Н с энергией, характерной для b-распада, должно пройти расстояние порядка сотен световых лет, прежде чем будет захвачено ядром. В 30—40-х гг. обнаружить такую частицу казалось вообще невозможным.

  Другой путь — наблюдение отдачи ядра в момент испускания Н — впервые рассмотрен советским физиком А. И. Лейпунским. В 1938 А. И. Алиханов и А. И. Алиханьян предложили использовать для этой цели реакцию К-захвата в 7: ядро 7 захватывает электрон из К-оболочки и испускает Н, превращаясь в ядро 7, 7Ве (е-, ne)7; при этом, если Н — реальная частица, 7 получает импульс, равный и противоположный по знаку импульсу Н Первый успешный опыт с этой реакцией был выполнен американским физиком Дж. Алленом в 1942. Оказалось, что энергия отдачи ионов 7 согласуется с теоретическим значением (в предположении нулевой массы Н). Последующие опыты с большей точностью подтвердили этот результат. Существование Н стало экспериментальным фактом. В физике появилась новая частица, все свойства которой были определены из косвенных экспериментов.

  Обнаружение свободного Н в процессе обратного b-распада стало возможным после создания мощных ядерных реакторов и больших сцинтилляционных В реакторе в результате b--распада осколков деления испускаются антинейтрино с энергией до 10 Мэв, в среднем 6 частиц на 1 деление. Поток антинейтрино от мощного реактора составляет (вблизи реактора) около 1013 частиц на 1 см2 в 1 сек.

  Эксперимент по прямому детектированию ne впервые был осуществлен в 1953 в США Ф. Райнесом и К. Коуэном на реакторе в Хэнфорде. Регистрировалась реакция (2") на входящем в состав сцинтилляционной жидкости с добавкой соли сильно поглощающего нейтроны. С помощью техники запаздывающих совпадений удалось выделить из фона характерную цепочку событий, вызываемых антинейтрино: позитрон, рождающийся в реакции (2"), аннигилируя с электроном, испускает два g-кванта, которые производят первую сцинтилляционную вспышку; через 5—10 мксек за ней следует вторая вспышка от g-квантов, испущенных ядром в результате захвата нейтрона, образовавшегося в реакции (2") и замедлившегося в жидкости. В 1956—59 опыт был повторен в лучших условиях (рис. 1). Было получено сечение s = (11 ± 2,6)·10-44 см2. Теоретическая величина сечения (усредненного по спектру антинейтрино) в предположении двухкомпонентного Н (см. ниже) равна (10—14)×10-44 см2. Эти опыты окончательно подтвердили существование свободного Н

  Основные свойства нейтрино

  Н и антинейтрино. Представление о Н и антинейтрино возникло чисто теоретически. Однако доказательство того, что эти частицы действительно разные, не может быть получено в рамках самой теории. Поскольку Н не имеет электрического заряда, не исключено, что Н по своим свойствам тождественно антинейтрино, т. е. является истинно нейтральной частицей; такое Н впервые было рассмотрено итальянским физиком Э. Майорана и поэтому называлось "майорановским". В 1946 Б. М. Понтекорво предложил для экспериментального решения этой проблемы использовать реакцию превращения 37 в 37. Из существования распада 37 (e-, ne)37 следует реакция

  37 + ne ® 37 + e-.     (3)

  Если ne и  не тождественны, то реакция



аналогичная реакции (3), при облучении 37 пучком антинейтрино от реактора не должна наблюдаться. В эксперименте, осуществленном американским ученым Р. Дейвисом в 1955—56 на четыреххлористом реакцию (*) не удалось обнаружить. Этот результат доказывает нетождественность ne и  (и, следовательно, является основой для введения сохраняющегося лептонного числа Le).

  Электронные и мюонные нейтрино. После открытия мюонов, p- и К-мезонов было установлено, что распад этих частиц также сопровождается вылетом Н:



В 1957 М. А. Марков, Ю. Швингер и К. Нишиджима высказали предположение, что Н, рождающееся в паре с мюоном (nm), отлично от Н, рождающегося в паре с электроном (nе). Возможность проверки этих ассоциативных свойств Н с помощью ускорителей высокой энергии рассматривалась в СССР М. А. Марковым и Б. М. Понтекорво. Успешные опыты были осуществлены в 1962 на Брукхейвенском ускорителе в США и в 1964 в Европейском центре ядерных исследований (в ЦЕРНе). Было показано, что под действием Н от распадов

  p+ ® m + nm, + ® m+ + nm,     (4)

происходит только реакция nm + n ® p + m-. Реакция nm + n ® р + e- не была найдена; это означает, что Н от реакций (4) не рождают электроны. Т. о., было доказано существование двух разных Н — nm и ne.

  В 1964—67 в аналогичных опытах было установлено, что nm при столкновении с ядрами рождает m- и не рождает m+, т. е. мюонные нейтрино nm и антинейтрино  также не тождественны и необходимо ввести еще одно сохраняющееся лептонное число Lm.

  Спиральность и лептонные числа нейтрино. До открытия несохранения четности в b-распаде считалось, что Н описывается волновой функцией, являющейся решением Дирака уравнения, и имеет четыре состояния, соответствующие четырем линейно-независимым решениям: два с проекцией спина на импульс (спиральностью) l = —1/2 — левое (левовинтовое) Н nл и левое антинейтрино  и два с l = + 1/2 — правое (правовинтовое) Н nп и правое антинейтрино . Теория Н, предполагающая существование четырех состояний, называется четырехкомпонентной, а двух состояний — двухкомпонентной. Примером двухкомпонентного Н является майорановское Н

  Обнаружение в 1956 несохранения четности открыло новую теоретическую возможность описания Н В 1957 Л. Д. Ландау и независимо пакистанский физик А. Салам, а также Ли Цзун-дао и Ян Чжэнь-нин построили двухкомпонентную теорию спирального Н, в которой Н имеет только два состояния: Либо nл и , либо nп и , т. е. Н и антинейтрино имеют противоположные значения спиральности. Для спирального двухкомпонентного Н операция пространственной инверсии Р (операция перехода от правой системы координат к левой) и операция зарядового сопряжения С (переход от частицы к античастице) каждая в отдельности не имеет физического смысла, так как переводит реальное Н в нефизическое состояние с неправильной спиральностью. Физический смысл имеет только произведение этих операций — так называемая комбинированная инверсия (), превращающая реальное Н nл (nп) в реальное антинейтрино



с противоположной спиральностью.

  В 1958 в Брукхейвене было проведено прямое измерение спиральности электронного Н, испускаемого в процессе 152m (e-,ne)152 * (рис. 2), и найдено, что с вероятностью, близкой к 100%, ne обладает левовинтовой спиральностью. Измерения спиральности мюонных Н в распадах p+ ® m+ + nm показали, что nm тоже левое. Было также установлено, что  и  имеют правую спиральность (рис. 3).

  Этих опытов, однако, недостаточно для подтверждения теории двухкомпонентного Н Доказательством двухкомпонентности Н являются опыты Райнеса по измерению сечения захвата антинейтрино (см. выше): сечение, в соответствии с двухкомпонентной теорией, оказалось в 2 раза выше, чем рассчитанное по четырехкомпонентной теории. Хотя все проведенные с Н опыты не позволяют исключить майорановский вариант двухкомпонентного Н, теория спирального двухкомпонентного Н более предпочтительна, так как допускает введение лептонных чисел Le и Lm, посредством которых удается получить все необходимые запреты в процессах с участием лептонов, например m± ® e± + g, е- + р ® n + p- + m+, К- ® p+ + е- + m- и др. Спиральная двухкомпонентная теория является логически более стройной и "экономной", так как из нее естественно вытекает равенство нулю массы и момента Н

  Помимо Le и Lm, имеются и др. способы введения лептонных чисел (см. Лептонный заряд).

  Масса и момент нейтрино. Экспериментально невозможно исключить наличие у Н очень малой массы. Наилучшая оценка верхнего предела массы электронного Н получена из анализа формы спектра b-электронов трития: mne £ 60 эв (что почти в 104 раз меньше массы электрона me " 510 кэв). Для мюонного Н экспериментальный предел значительно выше: mnm £ 1,2 Мэв. Если масса Н не строго равна 0, Н может иметь момент и, следовательно, участвовать в процессах электромагнитного взаимодействия, например в реакциях

  ne + e- ® ne + e-, nm + p ® p + p° + nm.

  Эксперименты по поиску этих реакций дали следующие ограничения на величину момента:



где mвмагнетон Бора, если



  Осцилляции нейтрино. В 1958 Б. М. Понтекорво высказал гипотезу, что если масса Н не строго равна 0 и нет строгого сохранения лептонных зарядов, возможны осцилляции Н, т. е. превращение одного вида Н в другой (аналогично



осцилляциям К-мезонов вследствие несохранения странности взаимодействиях), например



и т.д. Вопрос об осцилляциях может быть решен лишь экспериментально.

  Взаимодействия нейтрино

  Как уже говорилось, взаимодействие Н с др. частицами осуществляется посредством слабого взаимодействия. Современная теория универсального слабого взаимодействия (обобщенная теория разработанная американскими учеными М. Гелл-Маном, Р. Фейнманом, Р. Маршаком и Е. Сударшаном, описывает все экспериментально наблюдавшиеся процессы с участием Н, а также предсказывает еще не наблюдавшиеся, например упругое рассеяние Н на электроне и мюоне: ne + e ® ne + e, nm + m ® nm + m. Эксперименты по рассеянию Н на электроне по своей чувствительности близко подошли к возможности обнаружения этих процессов, однако, выделить их над уровнем фона пока не удалось.

  Особый интерес представляет взаимодействие Н при высоких энергиях. Согласно современной теории слабого взаимодействия, сечение рассеяния Н на др. лептонах, например реакции nm + е- ® ne + m-, должно расти с ростом энергии пропорционально квадрату энергии в системе центра инерции (с. ц. и.) сталкивающихся частиц (или линейно в лабораторной системе (л. с.)). Однако такой рост сечения взаимодействия в локальной теории не может происходить неограниченно, т.к. при энергиях ~300 Гэв в с. ц. и. сечение достигает своего естественного предела, определяемого так называемым условием унитарности (условием того, что суммарная вероятность всех возможных процессов при столкновении данных частиц равна 1). Можно ожидать, что при этих энергиях (если окажется справедливой современная теория) слабое взаимодействие станет "сильным" в том смысле, что сечения процессов множественного рождения лептонов станут сравнимыми с сечением двухчастичных процессов.

  Экспериментально пока удалось исследовать только процессы взаимодействий Н с сильно взаимодействующими частицами (адронами). Наблюдались квазиупругие процессы типа ne (nm) + n ® p + е-(m-) и неупругие процессы, например ne (nm) + n ® n (p) + е-(m-) + + " +..., где , " — целые числа. Для квазиупругих процессов можно теоретически предсказать ход сечения с ростом энергии. Согласно гипотезе советских ученых С. С. Герштейна и Я. Б. Зельдовича, нуклон является носителем сохраняющегося "слабого заряда", аналогичного электрическому. Если это так, то "слабый заряд" (как и электрический) должен быть "размазан" по объему нуклона и нуклон при взаимодействии с Н должен вести себя как протяженная частица. В то время как сечение квазиупругого рассеяния Н на точечном нуклоне растет линейно с ростом энергии (в л. с.), на протяженном нуклоне, как показывают расчеты, оно достигает постоянного значения при энергии Н En = 1—2 Гэв. Эксперименты подтвердили эту гипотезу при En = 1—5 Гэв.

  Для неупругих процессов ситуация более сложная. М. А. Марков высказал предположение, что полное сечение взаимодействия Н с нуклоном, несмотря на "обрезание" сечения в каждом отдельном канале реакции, должно расти линейно с возрастанием энергии (в л. с.) из-за неограниченного роста числа возможных каналов. В рамках определенных предположений это было доказано американскими учеными С. Адлером и Дж. Бьерксном. Как показал Р. Фейнман, такая зависимость сечения от энергии возможна, если нуклон представляет собой облако точечных частиц ("партонов"). Измерения, проведенные в ЦЕРНе, согласуются с линейным ростом полного сечения в области En = 1—10 Гэв: sn = (0,69 ± 0,05)·10-38En см2 (в формуле энергия En, выражена в Гэв). Получены также данные в опытах с Н космических лучей при энергии 10—100 Гэв: sn = (0,55 ± 0,15)·10-38En см2. Первые результаты, полученные в Национальной ускорительной лаборатории США (Батавия), не противоречат линейному росту сечения до En~40 Гэв. Т. о., все данные согласуются с линейным ростом полного сечения взаимодействия Н с нуклоном при En £ 100 Гэв. Высказывалось предположение, что сечение может линейно расти с энергией вплоть до геометрических размеров нуклона (~ 10-26 см2).

  Существует теория, отличная от теории в которой слабое взаимодействие осуществляется за счет обмена так называемым промежуточным бозоном. В этой теории сечение взаимодействия Н как с лептонами, так и с адронами должно "обрезаться" при высоких энергиях, причем энергия "обрезания" определяется массой промежуточного бозона.

  В 1973 впервые (ЦЕРН) в пузырьковой камере наблюдалось около сотни случаев взаимодействия nm и  с ядрами с рождением адронов без образования мюонов, а также (1974) несколько случаев рассеяния  на электроне. Это, по-видимому, свидетельствует о существовании нового типа взаимодействия Н с адронами и лептонами через так называемые нейтральные токи. Существование подобных взаимодействий вытекает, в частности, из объединенной теории слабых и электромагнитных взаимодействий (см. Слабые взаимодействия).

  Во всех перечисленных выше экспериментах Н выступает в роли инструмента исследования структуры элементарных частиц.

  Естественные источники нейтрино

  Естественная радиоактивность. Любое космическое тело, в том числе Земля, содержит значительное количество радиоактивных элементов и является источником Н Регистрация антинейтрино от Земли в принципе возможна, однако методы регистрации еще не разработаны.

  Столкновение протонов космических лучей с газом и реликтовыми фотонами может приводить к рождению заряженных p-мезонов, распад которых сопровождается испусканием Н (или антинейтрино). В этом механизме возможна генерация Н с энергиями вплоть до Еn = 1020 эв. Источником таких Н является атмосфера Земли, а также ядро и диск Галактики, где сосредоточена основная масса межзвездного газа. Н от столкновения протонов сверхвысоких энергий с реликтовыми фотонами испускаются во всем мировом пространстве. Существует гипотеза, что Н сверхвысоких энергий являются причиной сверхмощных широких атмосферных ливней (см. Космические лучи).

  Атмосфера Земли — пока единственный естественный источник, от которого удалось зарегистрировать Н Рождаются Н в верхних слоях атмосферы, где генерируется наибольшее число p- и К-мезонов. Впервые идея экспериментов с Н космических лучей была высказана М. А. Марковым (1960). Было предложено регистрировать глубоко под землей мюоны с энергией 10—100 Гэв от реакции nm + n ® р + m-(). Регистрируя мюоны из нижней полусферы Земли и под большими зенитными углами, можно избавиться от фона атмосферных мюонов и иметь чистые нейтринные события (). Первые результаты получены в Индии и в Южной Африке в 1965 с помощью специальных нейтринных телескопов (рис. 4). К 1973 мировая статистика насчитывала свыше сотни нейтринных событий.

  Реакции термоядерного синтеза элементов — основной механизм генерации Н в недрах Солнца и большей части звезд (в период их "ядерной" эволюции).

  Сверхгорячая плазма служит источником Н в звездах на завершающих этапах эволюции, а также в модели горячей Вселенной в первые доли секунды ее возникновения. Возможны два вида генерации Н Первый связан с реакциями взаимного превращения нуклонов



(так называемый урка-процесс) и может идти как на связанных нуклонах ядер при температурах Т ~ 109 К, так и на свободных нуклонах при Т ³ 1010 К. Второй способ, чисто лептонный, связан с реакциями типа



а также с реакциями



(фоторождение Н),



(нейтринная аннигиляция электрон-позитронных пар) и др., которые происходят, если существует гипотетическое рассеяние ne + е ® ne + e (предсказываемое теорией Пока не удалось доказать существование ne + е ® ne + е — рассеяния лабораторными методами (на Н от реакторов и ускорителей); считается, что астрофизические данные свидетельствуют в пользу существования такого процесса.

  Реликтовые Н Согласно модели горячей Вселенной, Н, испущенные в момент ее возникновения, испытывают сильное красное смещение при космологическом расширении Вселенной. Такие реликтовые Н заполняют все мировое пространство. В наиболее реалистическом варианте модели горячей Вселенной число мюонных и электронных Н и антинейтрино одинаково и составляет ~ 200 частиц/см3, а средняя энергия Н — (2—3)×10-4 эв, что соответствует температуре нейтринного газа 2—3 К. Для понимания механизма развития Вселенной очень важно экспериментально установить наличие реликтовых Н и измерить температуру нейтринного газа.

  В рамках модели горячей Вселенной удается получить наилучшую оценку для массы мюонного Н Согласно космологическим данным, плотность материи в расширяющейся Вселенной не может превышать 10-28 г/см3; отсюда следует, что максимально возможная масса мюонного Н составляет ~ 300 эв (т. е. значительно ниже верхнего предела, установленного лабораторными методами).

  Нейтронизация вещества, т. е. превращение протонов в нейтроны по схеме р + е- ® n + ne, может служить мощным источником Н, когда звезда по каким-либо причинам теряет гравитационную устойчивость и коллапсирует, превращаясь в нейтронную звезду. При этом огромное число Н, равное по порядку величины числу протонов в звезде (~ 1057), испускается за сотые доли сек. Если коллапсирует горячая звезда, нейтронизация происходит совместно с процессами, характерными для горячей плазмы. Такая ситуация возможна при взрывах сверхновых и при коллапсе гравитационном.

  О возможности регистрации Н от Солнца и др. звезд см. Нейтринная астрономия.

  Развитие науки о Н за последние четверть века убедительно доказало, что Н из гипотетической частицы превратилось в мощный инструмент исследования микро- и макромира.

  Лит.: Аллен Дж., Н, пер. с англ., М., 1960; Алиханов А. И., Слабые взаимодействия. Новейшие исследования b-распада, М., 1960; Теоретическая физика 20 века, М., 1962; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Понтекорво Б. М., Н и его роль в астрофизике, "Успехи физических наук", 1963, т. 79, в. 1, с. 3; Марков М. А., Н, М., 1964; И. М., Подземные нейтринные эксперименты, "Успехи физических наук". 1966, т. 89, в. 3, с. 513; Ли Ц. и Ву Ц., Слабые взаимодействия, пер. с англ., М., 1968; Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Березинский В. С., Н, М., 1973.

  Г. Т. Зацепим, Ю. С. Копысов.

Рис. 2. Схема эксперимента амер. физиков М. Гольдхабера, Л. Гродзинса и С. Суньяра по измерению спиральности нейтрино. Радиоактивный препарат 152Eum (Jp = 0-) 1 (где J — спин, p — четность ядра) испускает в процессе К-захвата нейтрино. Образующееся возбужденное ядро 1<sub>52</sub>*(1-) испускает g-квант (превращаясь в ядро 1<sub>52</sub>(0+)), который, пройдя через  анализатор 2 (представляющий собой намагниченное  для определения круговой поляризации -квантов, испытывает резонансное рассеяние на ядрах 1<sub>52</sub>(0+) 3. Условие резонанса выполняется только в том случае, если ядро  после испускания g-кванта имеет малый импульс отдачи, т. е. если нейтрино и g-квант испускаются в противоположных направлениях. В этом случае g-квант и нейтрино должны иметь одинаковый знак спиральности. Сцинтилляционный  Nal 4 считает число g-квантов <sup>+</sup> и <sup>-</sup>, рассеянных при направлениях  поля по и против движения нейтрино. Теоретическое значение (<sup>-</sup> — <sup>+</sup>)/2(<sup>-</sup> + <sup>+</sup>) = +0,025 для левовинтовой и -0,025 для правовинтовых спиральностей нейтрино; экспериментальное значение равно +0,017 ± 0,003, что согласуется со 100%-ной левовинтовой спиральностью нейтрино, если учесть все возможные эффекты деполяризации g-квантов. ( защита 5 предохраняет  4 от прямого попадания g-квантов.)
Рис. 2. Схема эксперимента амер. физиков М. Гольдхабера, Л. Гродзинса и С. Суньяра по измерению спиральности нейтрино. Радиоактивный препарат 152Eum (Jp = 0-) 1 (где J — спин, p — четность ядра) испускает в процессе К-захвата нейтрино. Образующееся возбужденное ядро 152*(1-) испускает g-квант (превращаясь в ядро 152(0+)), который, пройдя через анализатор 2 (представляющий собой намагниченное для определения круговой поляризации -квантов, испытывает резонансное рассеяние на ядрах 152(0+) 3. Условие резонанса выполняется только в том случае, если ядро после испускания g-кванта имеет малый импульс отдачи, т. е. если нейтрино и g-квант испускаются в противоположных направлениях. В этом случае g-квант и нейтрино должны иметь одинаковый знак спиральности. Сцинтилляционный Nal 4 считает число g-квантов + и -, рассеянных при направлениях поля по и против движения нейтрино. Теоретическое значение (-+)/2(- + +) = +0,025 для левовинтовой и -0,025 для правовинтовых спиральностей нейтрино; экспериментальное значение равно +0,017 ± 0,003, что согласуется со 100%-ной левовинтовой спиральностью нейтрино, если учесть все возможные эффекты деполяризации g-квантов. ( защита 5 предохраняет 4 от прямого попадания g-квантов.)



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 19:00:49