Большая Советская Энциклопедия (цитаты)

Небесная механика

Небесная (далее Н) механика, раздел астрономии, изучающий движения тел Солнечной системы в гравитационном поле. При решении некоторых задач Н механика (например, в теории движения комет) учитываются также и негравитационные эффекты: реактивные силы, сопротивление среды, изменение массы и др. Важным разделом современной Н механика является астродинамика, исследующая движения искусственных небесных тел. Методы, разрабатываемые Н механика, используются также при изучении и др. небесных тел. Однако в современной астрономии такие вопросы, как изучение движении в системах двойных и кратных звезд, статистические исследования закономерностей движения звезд и галактик, относят к звездной астрономии и внегалактической астрономии.

  Термин "Н механика" впервые введен П. Лапласом (1798), к этому разделу науки он относил теории равновесия и движения твердых и жидких тел, составляющих Солнечную систему (и ей подобные), под действием сил тяготения. В русской научной литературе раздел астрономии, посвященный этим проблемам, в течение долгого времени называлась теоретической астрономией. В английской литературе применяется также термин "динамическая астрономия",

  Задачи Н механика Решаемые Н механика задачи разделяются на четыре большие группы:

  1. Разработка общих вопросов движения небесных тел в гравитационном поле (так называемая задача n тел, частными случаями которой являются трех тел задача и двух тел задача).

  2. Построение математических теорий движения конкретных небесных тел как естественных, так и искусственных (планет, спутников, комет, космических зондов).

  3. Сравнение теоретических исследований с астрономическими наблюдениями и определение таким путем числовых значений фундаментальных астрономических постоянных (элементы орбит; массы планет; постоянные, связанные с вращением Земли, характеризующие фигуру Земли и ее гравитационное поле, и др.).

  4. Составление астрономических эфемерид (ежегодники астрономические), которые концентрируют в себе результаты теоретических исследований в области Н механика (а также астрометрии, звездной астрономии, геодезии и др.) и фиксируют на каждый момент времени фундаментальную пространственно-временную систему отсчета, необходимую для всех разделов науки, имеющих дело с измерением пространства и времени.

  Так как общее математическое решение задачи n тел имеет очень сложный характер и не может быть использовано в конкретных вопросах, в Н механика рассматриваются отдельные частные задачи, решение которых основывается на тех или иных особенностях Солнечной системы. Так, в первом приближении, движение планеты или кометы можно рассматривать как происходящее в поле тяготения одного только Солнца. В этом случае уравнения движения допускают решение в конечном виде (задача двух тел). Дифференциальные уравнения движения системы больших планет решаются с помощью разложения в математические рады (аналитические методы) или путем численного интегрирования (см. Возмущения небесных тел). Теория движения спутников во многих отношениях аналогична теории движения больших планет, однако, она имеет важную особенность: масса планеты, являющаяся в этом случае центральным телом, значительно меньше массы Солнца, вследствие чего его притяжение существенно возмущает движения спутников. На движение близких к планете спутников большое влияние оказывает также отклонение ее формы от сферической. Особенностью движения Луны является то обстоятельство, что ее орбита расположена целиком вне сферы действия тяготения Земли, т. е. за пределами той области, где притяжение Земли преобладает над притяжением Солнца. Поэтому при построении теории движения Луны приходится осуществлять больше последовательных приближений, чем в планетных задачах. В современной теории движения Луны за первое приближение принимается не задача двух тел, а так называемая задача Хилла (специальный случай задачи трех тел), решение которой дает промежуточную орбиту, более удобную для проведения процесса последовательных приближений, чем эллипс,

  При применении аналитических методов в теории движения малых планет и комет возникают многочисленные трудности, связанные с тем, что орбиты этих небесных тел обладают значительными эксцентриситетами и наклонами. Кроме того, некоторые соотношения (соизмеримости) между средними движениями малых планет и Юпитера значительно усложняют их движение. Поэтому при изучении движения малых планет и комет широко используются численные методы. В движениях комет обнаружены так называемые негравитационные эффекты, т. е. отклонения их движении от вычисленных по закону всемирного тяготения. Эти аномалии в движениях комет, по-видимому, связаны с реактивными силами, возникающими вследствие испарения вещества ядра кометы при ее приближении к Солнцу, а также и с рядом других еще мало изученных факторов (сопротивление среды, уменьшение массы кометы, солнечный ветер, гравитационное взаимодействие с потоками частиц, выбрасываемых Солнцем, и др.; см. Кометы).

  Особый раздел задач, стоящих перед Н механика, представляет изучение вращательного движения планет и спутников. Особо важное значение имеет теория вращения Земли, так как именно с Землей связаны основные системы астрономических координат.

  Теория фигур планет возникла в Н механика, однако, в современной науке изучение фигуры Земли является предметом геодезии и геофизики, а строением др. планет занимается астрофизика. Теория фигур планет и Луны стала особенно актуальной после запуска искусственных спутников Земли, Луны и Марса.

  Классической задачей Н механика является задача об устойчивости Солнечной системы. Эта проблема тесно связана с существованием вековых (непериодических) изменений больших полуосей, эксцентриситетов и наклонов планетных орбит. Методами небесной механики вопрос об устойчивости Солнечной системы не может быть полностью решен, так как математические ряды, используемые в задачах Н механика, пригодны только для ограниченного интервала времени. Кроме того, уравнения Н механика не содержат такие малые факторы, как, например, непрерывная потеря Солнцем его массы, которые, однако, могут играть существенную роль на больших интервалах времени. Тем не менее, отсутствие вековых возмущений первого и второго порядков у больших полуосей планетных орбит позволяет утверждать неизменность конфигурации Солнечной системы в течение нескольких миллионов лет.

  Исторический очерк. Н механика принадлежит к числу древнейших наук. Уже в 6 в. до н. э. народы Древнего Востока обладали глубокими астрономическими знаниями, связанными с движением небесных тел. Но в течение многих веков это была только эмпирическая кинематика Солнечной системы. Основы современной Н механика были заложены И. Ньютоном в "Математических началах натуральной философии" (1687). Закон тяготения Ньютона далеко не сразу получил всеобщее признание. Однако уже к середине 18 в. выяснилось, что он хорошо объясняет наиболее характерные особенности движения тел Солнечной системы (Ж. Д"Аламбер, А. Клеро). В работах Ж. Лагранжа и П. Лапласа были разработаны классические методы теории возмущений. Первая современная теория движения больших планет была построена У. Леверье в середине 19 в. Эта теория лежит до сих пор в основе французского национального астрономического ежегодника. В работах Леверье было впервые указано на необъяснимое законом Ньютона вековое смещение перигелия Меркурия, которое оказалось через 70 лет важнейшим наблюдательным подтверждением общей теории относительности.

  Дальнейшее развитие теория больших планет получила в конце 19 в. в работах американских астрономов С. Ньюкома и Дж. Хилла (1895—98). Работы Ньюкома открыли новый этап в развитии Н механика Он впервые обработал ряды наблюдений, охватывающие длительные интервалы времени и на этой основе получил систему астрономических постоянных, которая Только незначительно отличается от системы, принятой в 70-х гг. 20 в. Чтобы согласовать теорию с наблюдаемым движением Меркурия, Ньюком решил прибегнуть к гипотезе А. Холла (1895), который для объяснения невязок в движении больших планет предложил изменить показатель степени в законе тяготения Ньютона. Ньюком принял показатель степени равным 2,000 000 161 20. Закон Холла сохранялся в астрономических ежегодниках до 1960, когда он был, наконец, заменен релятивистскими поправками, вытекающими из общей теории относительности (см. ниже). Продолжая традиции Ньюкома и Хилла, Бюро американских эфемерид (Вашингтонская морская обсерватория) под руководством Д. Брауэра и Дж. Клеменса в течение 40-х и 50-х гг. 20 в. осуществило обширные работы по переработке планетных теорий. В частности, в результате этой работы в 1951 были опубликованы "Координаты пяти внешних планет", что явилось важным шагом в исследовании орбит внешних планет. Эта работа была первым успешным применением электронных вычислительных машин в фундаментальной астрономической задаче. В СССР в 1964 была разработана аналитическая теория движения Современная теория движения больших планет имеет настолько высокую точность, что путем сравнения теории с наблюдениями удалось подтвердить смещения планетных перигелиев, вытекающие из общей теории относительности, не только для Меркурия, но также для Венеры, Земли и Марса (см. табл.).

  Вековые смещения планетных перигелиев

Планета

Наблюдаемые смещения

Смещения, вычисленные по общей теории относительности

Меркурий

43,11” ± 0,45”

43,03”

Венера

8,4 ± 4,8

8,6

Земля

5,0 ± 1,2

3,8

Марс

1,1 ± 0,3

1,4

  Первые теории движения Луны были разработаны А. Клеро, Ж. Д"Аламбером, Л. Эйлером и П. Лапласом. Наиболее совершенной с практической точки зрения была теория немецкого астронома П. Ганзена (1857), которая использовалась в астрономических ежегодниках с 1862 по 1922. В 1867 была опубликована аналитическая теория движения Луны, разработанная французским астрономом Ш. Делоне. Современная теория Луны основана на работах Дж. Хилла (1886). Построение таблиц Луны на основе метода Хилла было начато в 1888 американским астрономом Э. Брауном. В 1919 три тома таблиц вышли в свет и в астрономических ежегодниках на 1923 впервые была дана эфемерида Луны, основанная на таблицах Брауна. Для того чтобы согласовать теорию и наблюдения, Браун должен был (также как и Ганзен) ввести в разложения координат эмпирический член, который никак не объяснялся гравитационной теорией движения Луны. Только в 30-е гг. 20 в. окончательно выяснилось, что эмпирический член отражает эффект неравномерного вращения Земли в движении небесных тел. С 1970 эфемерида Луны в астрономических ежегодниках вычисляется непосредственно по тригонометрическим рядам Брауна без помощи таблиц.

  Актуальное значение приобрела теория движения спутников больших планет, в первую очередь спутников Марса и Юпитера. Теория движения четырех спутников Юпитера была разработана еще Лапласом. В теории, предложенной В. де Ситтером (1919) и используемой в астрономических ежегодниках, учитываются сжатие Юпитера, солнечные возмущения и взаимные возмущения спутников. Внешние спутники Юпитера изучались в Институте теоретической астрономии АН СССР. Эфемериды этих спутников до 2000 года вычислены американским астрономом П. Хергетом (1968) с помощью численного интегрирования. Теория движения спутников Сатурна, основанная на классических методах, была построена немецким астрономом Г. Струве (1924—33). Устойчивость спутниковых систем рассмотрена в работах японского астронома Ю. Хагихара (1952). Советский математик М. Л. Лидов, анализируя эволюцию орбит искусственных спутников планет, получил интересные результаты и для естественных спутников. Им было впервые показано (1961), что, если бы орбита Луны имела наклон к плоскости эклиптики, равный 90°, то такая Луна уже после 55 оборотов, т. е. примерно через четыре года, упала на поверхность Земли. Наряду с разработкой теории высокой степени точности, но пригодной только: на сравнительно небольших интервалах: времени (сотни лет), в Н механика ведутся также исследования движения тел Солнечной системы в космогонических масштабах времени, т. е. на протяжении сотен тысяч и миллионов лет. Попытки решить эту проблему долгое время не давали удовлетворительных результатов. Только появление быстродействующих вычислительных машин, произведших революцию в Н механика, позволило снова вернуться к решению этой фундаментальной задачи. В СССР и за рубежом разработаны эффективные методы построения аналитической теории движения больших планет, открывающие возможность изучения движения планет на весьма длительных промежутках времени.

  В связи с разработкой космогонической гипотезы О. Ю. Шмидта в 40-х гг. в СССР были выполнены многочисленные исследования финальных движений в задаче трех тел; полученные в этих работах результаты имеют значение на неограниченном интервале времени. В США (1965) численным методом изучена эволюция орбит пяти внешних планет на интервале времени в 120 000 лет. Самым интересным результатом этой работы явилось открытие либрации относительно благодаря которой минимальное расстояние между этими планетами не может быть меньше 18 астрономических единиц, хотя в проекции на плоскость эклиптики орбиты и пересекаются. В СССР выполнена обширная работа (1967) по применению теории вековых возмущений Лагранжа — Брауэра к изучению эволюции орбиты Земли на протяжении миллионов лет. Эта работа имеет важное значение для понимания изменения климата Земли в различные геологические эпохи.

  Начало 20 в. было отмечено значительным прогрессом в разработке математических методов Н механика Этот прогресс был связан прежде всего с работами французского математика А. Пуанкаре, русского математика А. М. Ляпунова и финского астронома К. Сундмана. Последнему удалось решить общую задачу трех тел с помощью бесконечных степенных сходящихся рядов. Однако ряды Сундмана оказались совершенно непригодными для практического использования из-за их крайне медленной сходимости. Сходимость рядов в Н механика тесно связана с так называемой проблемой малых делителей. Математические трудности этой проблемы в значительной степени преодолены в работах математиков школы А. Н. Колмогорова.

  Развитие Н механика в СССР тесно связано с деятельностью двух научных центров, возникших непосредственно после Великой Октябрьской социалистической революции: Теоретической астрономии института АН СССР в Ленинграде и кафедры небесной механики Московского университета (см. Астрономический институт: имени П. К. Штернберга). В этих двух центрах сложились ленинградская и московская школы, которые определили развитие Н механика в СССР. В Ленинграде вопросы Н механика разрабатывались главным образом в связи с такими практическими задачами, как составление астрономических ежегодников, вычисление эфемерид малых планет и др. В Москве доминирующее влияние на протяжении многих лет имели космогонические проблемы, а также астродинамика.

  Среди иностранных научных учреждений, ведущих исследования в области Н механика, видное место занимают: Вашингтонская морская обсерватория, Гринвичская астрономическая обсерватория, Бюро долгот в Париже, Астрономический институт в Гейдельберге и др.

  Релятивистская Н. м. В середине 20 в. в связи с повышением точности оптических наблюдений небесных тел, развитием новых методов наблюдений (наблюдения доплеровского смещения, радиолокация и лазерная локация) и возможностью проведения экспериментов в Н механика при помощи космических зондов и искусственных спутников все большее значение приобретает учет релятивистских эффектов в движении тел Солнечной системы. Эти проблемы решаются релятивистской Н механика, опирающейся на общую теорию относительности Эйнштейна (см. Тяготение). Роль общей теории относительности для Н механика не ограничивается учетом малых поправок к теориям движения небесных тел. С появлением общей теории относительности удалось дать объяснение явлению тяготения, и таким образом Н механика как наука о гравитационном движении небесных тел по существу становится релятивистской.

  Согласно основной идее общей теории относительности, свойства пространства событий реального мира определяются движением и распределением масс, а движение и распределение масс, в свою очередь, определяются метрикой пространства-времени. Эта взаимосвязь находит свое отражение в уравнениях поля — нелинейных уравнениях с частными производными, определяющих метрику поля. В теории тяготения Ньютона уравнения движения (законы механики Ньютона) постулируются отдельно от уравнений поля (линейные уравнения Лапласа и Пуассона для ньютонова потенциала). В общей же теории относительности уравнения движения тел содержатся в уравнениях поля. Однако строгое решение уравнений поля, представляющее интерес для Н механика, и вид строгих уравнений движения задачи n тел, даже для n = 2, в общей теории относительности не получены. Лишь для n = 1 удалось найти строгие решения уравнений поля: решение Шварцшильда для сферически симметричного неподвижного тела и решение Керра, описывающее поле вращающегося тела сферической структуры. Для решения задачи n тел (n > 2) приходится прибегать к приближенным методам и искать решение в виде рядов по степеням малых параметров. Таким параметром в случае движения тел Солнечной системы часто служит отношение квадрата характеристической скорости орбитального движения тел к квадрату скорости света. Вследствие малости этого отношения (около 10-8) в уравнениях движения и их решениях достаточно для всех практических приложений учитывать лишь члены первой степени относительно этого параметра.

  Релятивистские эффекты в движении больших планет Солнечной системы могут быть получены с достаточной точностью на основе решения Шварцшильда. Основным эффектом при этом является вековое смещение перигелиев планет. В решении Шварцшильда имеется также релятивистский вековой член в движении узла орбиты, но выделить этот эффект в явном виде из наблюдений не удается. Частично этот вековой член учитывается в радиолокационном эффекте при радиолокации Меркурия и Венеры с Земли (радиолокационный эффект состоит в дополнительном по сравнению с ньютоновским запаздыванием сигнала при возвращении его на Землю). Этот эффект подтвержден экспериментально. Релятивистские эффекты в движении малых планет и комет выявить достаточно уверенно пока не удается из-за отсутствия хорошо разработанной ньютоновской теории движения этих объектов и недостаточного количества точных наблюдений.

  Релятивистские эффекты в движении Луны получаются на основе решения релятивистской задачи трех тел и обусловлены главным образом действием Солнца. Они складываются из вековых движений узла и перигея орбиты Луны со скоростью 1,91” в столетие (геодезическая прецессия), а также из периодических возмущений в координатах Луны. Эти эффекты, по-видимому, смогут быть выявлены при лазерной локации Луны. Для усовершенствования теорий движения остальных естественных спутников планет достаточно к ньютоновой теории добавить релятивистские вековые члены в элементах орбит. Первая группа таких членов обусловлена шварцшильдовским смещением перицентра. Вторая группа — это вековые члены в долготе перицентра и узла, вызванные собственным вращением планеты. Наконец, движение планеты вокруг Солнца также приводит к вековым членам в этих элементах (геодезическая прецессия). Все эти члены для некоторых спутников могут достигать значительной величины (особенно для близких спутников Юпитера), но отсутствие точных наблюдений препятствует их обнаружению. Определение релятивистских эффектов в движении искусственных спутников Земли также не дает положительных результатов из-за невозможности точного учета влияния атмосферы и аномалий гравитационного поля Земли на их движение. Большой теоретический интерес представляют релятивистские поправки во вращательном движении небесных тел, однако, их обнаружение связано с еще большими трудностями. Реальным представляется лишь выявление релятивистских эффектов при изучении прецессии гироскопов на Земле и на спутниках Земли.

  Лит.: Брауэр Д., Клеменс Дж., Методы небесной механики, пер. с англ., М., 1964; Брумберг В. А., Релятивистская небесная механика, М., 1972; Гребеников Е. А., Рябов Ю. А., Новые качественные методы в небесной механике, М., 1971; Дубошин Г. Н., Н механика, 2 изд., М., 1968; Зигель К. Л., Лекции по небесной механике, пер. с нем., М., 1959; Пуанкаре А., Лекции по небесной механике, пер. с франц., М., 1965; его же, Новые методы небесной механики, Избр. труды, т. 1—2, М., 1971—72; Смарт У. М., Н механика, пер. с англ., М., 1965; Субботин М. Ф., Введение в теоретическую астрономию, М., 1968; Уинтнер А., Аналитические основы небесной механики, пер. с англ., М., 1967; Чеботарев Г. А., Аналитические и численные методы небесной механики, М. — Л., 1965; Шарлье К., Н механика, пер. с нем., М., 1966; Справочное руководство по небесной механике и астродинамике, М., 1971.

  Г. А. Чеботарев.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 16:45:42