|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Моделирование физическое | Моделирование физическое (далее М)вид моделирования, который состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу.
В науке любой эксперимент, производимый для выявления тех или иных закономерностей изучаемого явления или для проверки правильности и границ применимости найденных теоретическим путем результатов, по существу представляет собою моделирование, т. к. объектом эксперимента является конкретная модель, обладающая необходимыми физическими свойствами, а в ходе эксперимента должны выполняться основные требования, предъявляемые к Моделирование физическое В технике Моделирование физическое используется при проектировании и сооружении различных объектов для определения на соответствующих моделях тех или иных свойств (характеристик) как объекта в целом, так и отдельных его частей. К Моделирование физическое прибегают не только по экономическим соображениям, но и потому, что натурные испытания очень трудно или вообще невозможно осуществить, когда слишком велики (малы) размеры натурного объекта или значения других его характеристик (давления, температуры, скорости протекания процесса и т. п.).
В основе Моделирование физическое лежат подобия теория и размерностей анализ. Необходимыми условиями Моделирование физическое являются геометрическое подобие (подобие формы) и физическое подобие модели и натуры: в сходственные моменты времени и в сходственных точках пространства значения переменных величин, характеризующих явления для натуры, должны быть пропорциональны значениям тех же величин для модели. Наличие такой пропорциональности позволяет производить пересчет экспериментальных результатов, получаемых для модели, на натуру путем умножения каждой из определяемых величин на постоянный для всех величин данной размерности множитель - коэффициент подобия.
Поскольку физические величины связаны определенными соотношениями, вытекающими из законов и уравнений физики, то, выбрав некоторые из них за основные, можно коэффициенты подобия для всех других производных величин выразить через коэффициенты подобия величин, принятых за основные. Например, в механике основными величинами считают обычно длину l, время t и массу m. Тогда, поскольку скорость v = l/t, коэффициент подобия скоростей kv = vн/vм (индекс "н" у величин для натуры, "м" - для модели), можно выразить через коэффициенты подобия длин kl = lн/lм и времен kt = tн/tм в виде kv = kl/kt. Аналогично, т. к. на основании второго закона Ньютона сила связана с ускорением w соотношением = mw, то k = km ×kw (где, в свою очередь, kw = kv/kt) и т. д. Из наличия таких связей вытекает, что для данного физического явления некоторые безразмерные комбинации величин, характеризующих это явление, должны иметь для модели и натуры одно и то же значение. Эти безразмерные комбинации физических величин называются критериями подобия. Равенство всех критериев подобия для модели и натуры является необходимым условием Моделирование физическое Однако добиться этого равенства можно не всегда, т. к. не всегда удается одновременно удовлетворить всем критериям подобия.
Чаще всего к Моделирование физическое прибегают при исследовании различных механических (включая гидроаэромеханику и механику деформируемого твердого тела), тепловых и электродинамических явлений. При этом число и вид критериев подобия для каждого моделируемого явления зависит от его природы и особенностей. Так, например, для задач динамики точки (или системы материальных точек), где все уравнения вытекают из второго закона Ньютона, критерием подобия является число Ньютона = Ft2/ml и условие М. состоит в том, что
Для колебаний груза под действием силы упругости = cl равенство (1) приводит к условию t2нсн/mн = t2мсм/mм, что, например, позволяет по периоду колебаний модели определить период колебаний натуры; при этом явление не зависит от линейного масштаба (от амплитуды колебаний). Для движения в поле тяготения, где = km/l2, условием подобия является kнt2н/l3н = kмt2м/l3м (явление не зависит от масс). При движении в одном и том же поле тяготения, например Солнца, kм = kн, и полученное соотношение дает третий закон Кеплера для периода обращения. Отсюда, считая одну из планет "моделью", можно, например, найти период обращения, любой другой планеты, зная ее расстояние от Солнца.
Для непрерывной среды при изучении ее движения число критериев подобия возрастает, что часто значительно усложняет проблему Моделирование физическое В гидроаэромеханике основными критериями подобия являются Рейнольдса число , Маха число М, Фруда число , Эйлера число Еu, а для нестационарных (зависящих от времени) течений еще и Струхаля число St. При Моделирование физическое явлений, связанных с переносом тепла в движущихся жидкостях и газах или с физико- превращениями компонентов газовых потоков и др., необходимо учитывать еще ряд дополнительных критериев подобия.
Создаваемые для гидроаэродинамического моделирования экспериментальные установки и сами модели должны обеспечивать равенство соответствующих критериев подобия у модели и натуры. Обычно это удается сделать в случаях, когда для течения в силу его особенностей сохраняется лишь один критерий подобия. Так, при Моделирование физическое стационарного течения несжимаемой вязкой жидкости (газа) определяющим будет параметр и необходимо выполнить одно условие
где r - плотность, m - динамический коэффициент вязкости среды. При уменьшенной модели (lм < lн) это можно сделать, или увеличивая скорость (vм > vн), или используя для моделирования другую жидкость, у которой, например, rм > rн, а mм £ mн. При аэродинамических исследованиях увеличивать vм в этом случае нельзя (нарушится условие несжимаемости), но можно увеличить rм, используя аэродинамические трубы закрытого типа, в которых циркулирует сжатый воздух.
Когда при Моделирование физическое необходимо обеспечить равенство нескольких критериев, возникают значительные трудности, часто непреодолимые, если только не делать модель тождественной натуре, что фактически означает переход от Моделирование физическое к натурным испытаниям. Поэтому на практике нередко прибегают к приближенному моделированию, при котором часть процессов, играющих второстепенную роль, или совсем не моделируется, или моделируется приближенно. Такое Моделирование физическое не позволяет найти прямым пересчетом значения тех характеристик, которые не отвечают условиям подобия, и их определение требует соответствующих дополнительных исследований. Например, при Моделирование физическое установившихся течений вязких сжимаемых газов необходимо обеспечить равенство критериев и М и безразмерного числа c = cp/cv (cp и cv - удельные теплоемкости газа при постоянном давлении и постоянном объеме соответственно), что в общем случае сделать невозможно. Поэтому, как правило, обеспечивают для модели и натуры лишь равенство числа М, а влияние на определяемые параметры различий в числах и c исследуют отдельно или теоретически, или с помощью других экспериментов, меняя в них в достаточно широких пределах значения и c.
Для твердых деформируемых тел особенности Моделирование физическое тоже зависят от свойств этих тел и характера рассматриваемых задач. Так, при моделировании равновесия однородных упругих систем (конструкций), механические свойства которых определяются модулем упругости (модулем Юнга) Е и безразмерным Пуассона коэффициентом n, должны выполняться 3 условия подобия:
где g - ускорение силы тяжести (g = rg - удельный вес материала). В естественных условиях gм = gн = g, и получить полное подобие при lм ¹ lн можно, лишь подобрав для модели специальный материал, у которого rм, Ем и nм будут удовлетворять первым двум из условий (3), что практически обычно неосуществимо.
В большинстве случаев модель изготовляется из того же материала, что и натура. Тогда rм = rн, Ем = Ен и второе условие дает gмlм = gнlн. Когда весовые нагрузки существенны, для выполнения этого условия прибегают к т. н. центробежному моделированию, т. е. помещают модель в центробежную машину, где искусственно создается приближенно однородное силовое поле, позволяющее получить gм > gн и сделать lм < lн. Если же основными являются другие нагрузки, а весом конструкции и, следовательно, учетом ее удельного веса g = rg можно пренебречь, то приближенное Моделирование физическое осуществляют при gм = gн = g, удовлетворяя лишь последнему из соотношений (3), которое дает м/l2м = н/l2н, следовательно, нагрузки на модель должны быть пропорциональны квадрату ее линейных размеров. Тогда модель будет подобна натуре и если, например, модель разрушается при нагрузке кр, то натура разрушается при нагрузке крlн/lм. Неучет в этом случае весовых нагрузок дает следующее. Поскольку эти нагрузки имеют значения gl3, а последнее из условий (3) требует пропорциональности нагрузок Р, то при lм < lн весовая нагрузка на модель будет меньше требуемой этим условием, т. е. Моделирование физическое не будет полным и модель, как недогруженная, будет прочнее натуры. Это обстоятельство тоже можно учесть или теоретическим расчетом или дополнительными экспериментами.
Одним из видов Моделирование физическое, применяемым к твердым деформируемым телам, является поляризационно-оптический метод исследования напряжений, основанный на свойстве ряда изотропных прозрачных материалов становиться под действием нагрузок (т. е. при деформации) анизотропными, что позволяет исследовать распределение напряжений в различных деталях с помощью их моделей из прозрачных материалов.
При Моделирование физическое явлений в других непрерывных средах соответственно изменяются вид и число критериев подобия. Так, для пластичных и вязкопластичных сред в число этих критериев наряду с параметрами Фруда, Струхаля и модифицированным параметром Рейнольдса входят параметры Лагранжа, Стокса, Сен-Венана и т. д.
При изучении процессов теплообмена тоже широко используют Моделирование физическое Для случая переноса тепла конвекцией определяющими критериями подобия являются Нуссельта число Nu = al/ l, Прандтля число = n/a, Грасхофа число Gr = bgl3 DT/n2, а также число Рейнольдса , где a - коэффициент теплоотдачи, а - коэффициент температуропроводности, # - коэффициент теплопроводности среды (жидкости, газа), n - кинематический коэффициент вязкости, b - коэффициент объемного расширения, DТ - разность температур поверхности тела и среды. Обычно целью Моделирование физическое является определение коэффициента теплоотдачи, входящего в критерий Nu, для чего опытами на моделях устанавливают зависимость Nu от других критериев. При этом в случае вынужденной конвекции (например, теплообмен при движении жидкости в трубе) становится несущественным критерий Gr, а в случае свободной конвекции (теплообмен между телом и покоящейся средой) - критерий . Однако к значительным упрощениям процесса Моделирование физическое это не приводит, особенно из-за критерия , являющегося физической константой среды, что при выполнении условия м = н практически исключает возможность использовать на модели среду, отличную от натурной. Дополнительные трудности вносит и то, что физические характеристики среды зависят от ее температуры. Поэтому в большинстве практически важных случаев выполнить все условия подобия не удается; приходится прибегать к приближенному моделированию. При этом отказываются от условия равенства критериев, мало влияющих на процесс, а др. условиям (например, подобие физических свойств сред, участвующих в теплообмене) удовлетворяют лишь в среднем. На практике часто используют также т. н. метод локального теплового моделирования, идея которого заключается в том, что условия подобия процессов для модели и натуры выполняются только в той области модели, где исследуется процесс теплообмена. Например, при исследовании теплоотдачи в системе однотипных тел (шаров, труб) в теплообмене на модели может участвовать лишь одно тело, на котором выполняют измерения, а остальные служат для обеспечения геометрического подобия модели и натуры.
В случаях переноса тепла теплопроводностью (кондукцией) критериями подобия являются Фурье число Fo = at0/l2 и число Био = al/l, где t0 - характерный промежуток времени (например, период). Для апериодических процессов (нагревание, охлаждение) t0 обычно отсутствует и параметр Fo выпадает, а отношение at/l2 определяет безразмерное время. При Моделирование физическое таких процессов теплообмена удается в широких пределах изменять не только размеры модели, но и темп протекания процесса.
Однако чаще для исследования процессов переноса тепла теплопроводностью применяют моделирование аналоговое.
Электродинамическое моделирование применяется для исследования электромагнитных и электромеханических процессов в электрических системах. Электродинамическая модель представляет собой копию (в определенном масштабе) натурной электрической системы с сохранением физической природы основных ее элементов. Такими элементами модели являются синхронные генераторы, трансформаторы, линии передач, первичные двигатели (турбины) и нагрузка (потребители электрической энергии), но число их обычно значительно меньше, чем у натурной системы. Поэтому и здесь моделирование является приближенным, причем на модели по возможности полно представляется лишь исследуемая часть системы.
Особый вид Моделирование физическое основан на использовании специальных устройств, сочетающих физические модели с натурными приборами. К ним относятся стенды испытательные для испытания машин, наладки приборов и т. п., тренажеры для тренировки персонала, обучаемого управлению сложными системами или объектами, имитаторы, используемые для исследования различных процессов в условиях, отличных от обычных земных, например при глубоком вакууме или очень высоких давлениях, при перегрузках и т. п. (см. Барокамера, Космического полета имитация).
Моделирование физическое находит многочисленные приложения как при научных исследованиях, так и при решении большого числа практических задач в различных областях техники. Им широко пользуются в строительном деле (определение усталостных напряжений, эксплуатационных разрушений, частот и форм свободных колебаний, виброзащита и сейсмостойкость различных конструкций и др.); в гидравлике и в гидротехнике (определение конструктивных и эксплуатационных характеристик различных гидротехнических сооружений, условий фильтрации в грунтах, моделирование течений рек, волн, приливов и отливов и др.); в авиации, ракетной и космической технике (определение характеристик летательных аппаратов и их двигателей, силового и теплового воздействия среды и др.); в судостроении (определение гидродинамических характеристик корпуса, рулей и судоходных двигателей, ходовых качеств, условий спуска и др.); в приборостроении; в различных областях машиностроения, включая энергомашиностроение и наземный транспорт; в нефте- и газодобыче, в теплотехнике при конструировании и эксплуатации различных тепловых аппаратов; в электротехнике при исследованиях всевозможных электрических систем и т. п.
Лит.: Седов Л. И., Методы подобия и размерности в механике, М., 1972; Гухман А. А., Введение в теорию подобия, М., 1963; Эйгенсон Л. С., Моделирование, М., 1952; Кирпичев М. В., Михеев М. А., Моделирование тепловых устройств, М. - Л., 1936; Шнейдер П. Дж., Инженерные проблемы теплопроводности, пер. с англ., М., 1960; Веников В. А., Иванов-Смоленский А. В., Физическое моделирование электрических систем, М. - Л., 1956.
С. М. Тарг, С. Л. Вишневецкий, В. А. Арутюнов.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 17:55:27
|
|
|
|
|
|
|
|
|
|