Большая Советская Энциклопедия (цитаты)

Микроскопическая техника

Микроскопическая техника (далее М) в биологии, совокупность методов и приемов для изучения с помощью оптического и электронного микроскопов строения, жизнедеятельности, развития, состава и физических свойств клеток, тканей и органов. М включает: подготовку живых объектов к микроскопическому исследованию и его проведение, изготовление постоянных (неживых) препаратов; микро-, гисто- и цитохимические исследования; особые методы подготовки препаратов для электронной микроскопии.

  Прижизненные наблюдения в проходящем свете осуществляются на простейших, мелких яйцах, культивируемых клетках и тканях, прозрачных участках тела многоклеточных (например, на кровеносных сосудах в плавательной перепонке лягушки). В отраженном свете под микроскопом можно изучать поверхностные структуры клетки, ткани, органа. Для цитофизиологических наблюдений пользуются прижизненным окрашиванием, дающим представление о pH клетки и ее органоидов, а также о физиологическом состоянии живого объекта. Для прижизненных наблюдений требуются: нагревательный столик (рис. 1) особый термостат, перестраиваемый на заданную температуру в широком температурном диапазоне; стеклянные, пластмассовые, кварцевые, металлические или другие камеры (рис. 2) с постоянной или проточной средой требуемого состава. Наблюдаемые объекты (чаще клетки однослойных культур) могут длительное время оставаться нормальными при достаточном снабжении их питательными веществами и Одна из задач М для живых объектов - повышение контрастности изображения, для чего используется, например, фазово-контрастное устройство. Интерференционная микроскопия дополнительно дает сведения о толщине объекта, концентрации в нем сухого вещества, содержании воды и показателе преломления. Прижизненные наблюдения проводятся также в темном поле (ультрамикроскопия) с использованием специального конденсора; при этом объект освещается сбоку, а фон остается темным. Темнопольное устройство позволяет увидеть чрезвычайно мелкие (например, коллоидные) частицы. С помощью поляризационного микроскопа можно изучать объекты (или их элементы), обладающие оптической анизотропией. Для исследования как живых, так и неживых биологических объектов применяется люминесцентная микроскопия, особенно для изучения вторичной флуоресценции, возникающей при окраске клеток и тканей слабыми концентрациями флуорохромов (акридиновый оранжевый, эритрозин, родамин и др.). Различия во флуоресценции отдельных веществ (нуклеиновых кислот, липидов) позволяют изучать их локализацию, динамику изменений и даже количество изучаемого вещества. Соединение с флуорохромом (изоцианат флуоресцеина) и связывание этого вещества с антителами (см. Иммунофлуоресценция) дает возможность выяснить локализацию антигенов, судьбу антител и др. вопросы иммунологии. Недавно получил распространение метод микроскопии живых и неживых объектов в ультрафиолетовых лучах с использованием специальной кварцевой оптики. Наблюдения над живыми объектами документируются микрокиносъемкой, особенно замедленной.

  Для получения постоянных препаратов объект фиксируют, т. е. убивают так, чтобы он сохранил по возможности неизменной структуру. Наиболее распространенные фиксаторы - формалин, спирт, четырехокись а также комбинированные фиксаторы - смеси веществ. Фиксация (особенно для электронной микроскопии) осуществляется также методом лиофилизации, высушиванием мазков (например, крови) или отпечатков. При работе с клеточными культурами используются пластинки из стекла или слюды, на которых клетки располагаются в один слой. В других случаях для микроскопии пользуются срезами, получаемыми на микротоме, объект при этом обезвоживают и заливают в парафин, целлоидин, желатину или замораживают. Для электронной микроскопии материал обычно фиксируют четырехокисью а заливку производят в акриловые мономеры, которые полимеризуют соответствующим катализатором, или в эпоксидные смолы.

  Микро-, гисто- и цитохимические исследования. Для повышения контрастности препаратов, наблюдаемых в оптический микроскоп, применяют красители, избирательно окрашивающие разные клеточные структуры. Особенно широко используются красители в гистохимии. Гистохимические реакции основаны на образовании некоторыми веществами нерастворимых и иногда окрашенных осадков, обнаруживаемых микроскопически. Ферменты обнаруживаются в клетках по активности при их воздействии на определенные субстраты, находящиеся в ткани или добавленные извне. Интенсивность гистохимических реакций часто изучают и оценивают визуально. Более совершенны количественные методы оценки, например подсчет числа клеток с определенной интенсивностью окраски, числа зерен осадка, а также авторадиография, цитофотометрия.

  При электронной микроскопии вирусов, микроорганизмов, ультратонких срезов более крупных объектов их контрастность усиливают напылением частиц металла. Для негативного контраста объект помещают в раствор более плотного вещества (например, кислоты), заполняющего промежутки между изучаемыми частицами, которые выглядят светлыми на темном фоне. Контраст усиливают также, применяя "электронные красители" (четырехокись и др.), избирательно связывающиеся с некоторыми участками объекта. При использовании ферритина зерна его, содержащие молекулы обнаруживаются в составе клеточных структур. См. также Микроскоп.

 

  Лит.: Мейсель М. Н., Люминесцентная микроскопия, "Вестник АН СССР", 1953, № 10, с. 3-10; Ромейс Б., М, пер. с нем., М., 1954; Брумберг Е. М., О флуоресцентных микроскопах, "Журнал общей биологии", 1955, т. 16, № 3, с. 222-37; Современные методы и техника морфологических исследований. (Сб. ст.), под. ред. Д. А. Жданова, Л., 1955; Роскин Г. И., Левинсон Л. Б., М, 3 изд., М., 1957; Аппельт Г., Введение в методы микроскопического исследования, пер. с нем., М., 1959; Зубжицкий Ю. Н., Метод люминесцентной микроскопии в микробиологии, вирусологии и иммунологии, Л., 1964.

  С. Я. Залкинд.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.12.2024 17:47:36