|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Конические сечения | Конические сечения (далее К) линии, которые получаются сечением прямого кругового конуса плоскостями, не проходящими через его вершину. К могут быть трех типов:
1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая - эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.
2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая - парабола, целиком лежащая на одной полости.
3) Секущая плоскость пересекает обе полости конуса; линия пересечения - гипербола - состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.
С точки зрения аналитической геометрии К- действительные нераспадающиеся линии второго порядка.
В тех случаях, когда К имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путем перенесения начала координат в центр) к виду:
a11x2+2a12xy + a22y2 = a33.
Дальнейшие исследования таких (называемых центральными) К показывают, что их уравнения могут быть приведены к еще более простому виду:
Ах2 + Ву2= С, (1)
если за направления осей координат выбрать т. н. главные направления - направления главных осей (осей симметрии) К Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение (1) определяет эллипс; если А и В разного знака, то - гиперболу.
Уравнение параболы привести к виду (1) нельзя. При надлежащем выборе осей координат (одна ось координат - единственная ось симметрии параболы, другая - перпендикулярная к ней прямая, проходящая через вершину параболы) ее уравнение можно привести к виду:
y2 = 2рх.
К были известны уже математикам Древней Греции (например, Менехму, 4в. до н. э.); с помощью этих кривых решались некоторые задачи на построение (удвоение куба и др.), оказавшиеся недоступными при использовании простейших чертежных инструментов - циркуля и линейки. В первых дошедших до нас исследованиях греческие геометры получали К, проводя секущую плоскость перпендикулярно к одной из образующих, при этом, в зависимости от угла раствора при вершине конуса (т. е. наибольшего угла между образующими одной полости), линия пересечения оказывалась эллипсом, если этот угол -острый, параболой, если - прямой, и гиперболой, если - тупой. Наиболее полным сочинением, посвященным этим кривым, были "К" Аполлония Пергского (около 200 до н. э.). Дальнейшие успехи теории К связаны с созданием в 17 в. новых геометрических методов: проективного (французские математики Ж. Дезарг, Б. Паскаль) и в особенности координатного (французские математики Р. Декарт, П. Ферма).
При надлежащем выборе системы координат уравнение К может быть приведено к виду:
y2 = 2px + lx2 (р и l постоянные).
Если р ¹ 0, то оно определяет параболу при l = 0, эллипс при l < 0, гиперболу при l > 0. Геометрическое свойство К, содержащееся в последнем уравнении, было известно уже древнегреческим геометрам и послужило для Аполлония Пергского поводом присвоить отдельным типам К названия, сохранившиеся до сих пор: слово "парабола" (греческого parabole) означает приложение (т. к. в греческой геометрии превращение прямоугольника данной площади y2 в равновеликий ему прямоугольник с данным основанием 2p называлось приложением данного прямоугольника к этому основанию); слово "эллипс" (греческий élleipsis) - недостаток (приложение с недостатком), слово "гипербола" (греческий hyperbole) - избыток (приложение с избытком).
С переходом к современным методам исследования стереометрическое определение К было заменено планиметрическими определениями этих кривых как геометрических мест на плоскости. Так, например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух данных точек (фокусов) имеет данное значение.
Можно дать другое планиметрическое определение К, охватывающее все три типа этих кривых: К- геометрическое место точек, для каждой из которых отношение ее расстояний до данной точки ("фокуса") к расстоянию до данной прямой ("директрисы") равно данному положительному числу ("эксцентриситету") е. Если при этом е < 1, то К- эллипс; если е > 1, то - гипербола; если е = 1, то - парабола.
Интерес к К всегда поддерживался тем, что эти кривые часто встречаются в различных явлениях природы и в человеческой деятельности. В науке К приобрели особенное значение после того, как немецкий астроном И. Кеплер открыл из наблюдений, а английский ученый И. Ньютон теоретически обосновал законы движения планет, один из которых утверждает, что планеты и кометы Солнечной системы движутся по К, в одном из фокусов которого находится Солнце. Следующие примеры относятся к отдельным типам К: параболу описывает снаряд или камень, орошенный наклонно к горизонту (правильная форма кривой несколько искажается сопротивлением воздуха); в некоторых механизмах пользуются зубчатыми колесами эллиптической формы ("эллиптическая зубчатка"); гипербола служит графиком обратной пропорциональности, часто наблюдающейся в природе (например, закон Бойля - Мариотта).
Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959.
В. И. Битюцков.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 20:02:05
|
|
|
|
|
|
|
|
|
|