|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Изгиб | Изгиб (далее И) в сопротивлении материалов, вид деформации, характеризующийся искривлением (изменением кривизны) оси или срединной поверхности деформируемого объекта (бруса, балки, плиты, оболочки и др.) под действием внешних сил или температуры. Применительно к прямому брусу различают И: простой, или плоский, при котором внешние силы лежат в одной из главных плоскостей бруса (т. е. плоскостей, проходящих через его ось и главные оси инерции поперечного сечения) (см. Моменты инерции); сложный, вызываемый силами, расположенными в разных плоскостях; косой, являющийся частным случаем сложного И (см. Косой изгиб). В зависимости от действующих в поперечном сечении бруса силовых факторов (рис. 1, а, б) И называется чистым (при наличии только изгибающих моментов) и поперечным (при наличии также и поперечных сил). В инженерной практике рассматривается также особый случай И - продольный И (рис. 1, в), характеризующийся выпучиванием стержня под действием продольных сжимающих сил (см. Продольный изгиб). Одновременное действие сил, направленных по оси стержня и перпендикулярно к ней, вызывает продольно-поперечный И (рис. 1, г).
Приближенный расчет прямого бруса на действие И в упругой стадии производится в предположении, что поперечные сечения бруса, плоские до И, остаются плоскими и после него (гипотеза плоских сечений); полагают также, что продольные волокна бруса при И не давят друг на друга и не стремятся оторваться одно от другого. При плоском И в поперечных сечениях бруса возникают нормальные и касательные напряжения. Нормальные напряжения s в произвольном волокне какого-либо поперечного сечения бруса (рис. 2), лежащем на расстоянии y от нейтральной оси, определяются формулой где Mz - изгибающий момент в сечении, a z - момент инерции поперечного сечения относительно нейтральной оси. Наибольшие нормальные напряжения возникают в крайних волокнах сечения момент сопротивления поперечного сечения). Касательные напряжения t, возникающие при поперечном И, определяются по формуле Д. И Журавского где Qy - поперечная сила в сечении, z - статический момент относительно нейтральной оси части площади поперечного сечения, расположенной выше (или ниже) рассматриваемого волокна, b - ширина сечения на уровне рассматриваемого волокна. Характер изменения изгибающих моментов и поперечных сил по длине бруса обычно изображается графиками-эпюрами, по которым определяются их расчетные значения. Под влиянием И ось бруса искривляется, ее кривизна определяется выражением где r - радиус кривизны оси изогнутого бруса в рассматриваемом сечении; Е - модуль продольной упругости материала бруса. В случаях малых деформаций кривизна приближенно выражается второй производной от прогиба , а поэтому между координатами изогнутой оси и изгибающим моментом существует дифференциальная зависимость называемая дифференциальным уравнением оси изогнутого бруса. Решением этого уравнения определяется упругая линия балки (бруса).
Расчет бруса на И с учетом пластических деформаций приближенно производится в предположении, что при возрастании нагрузки (изгибающего момента) первоначально в крайних точках (волокнах), а затем и во всем поперечном сечении возникают пластические деформации. Распределение напряжений в предельном состоянии имеет вид двух прямоугольников с ординатами, равными пределу текучести материала sт, при этом кривизна бруса неограниченно возрастает. Такое состояние в сечении называется пластическим шарниром, а соответствующий ему момент является предельным и определяется по формуле в которой 1 и 2 - статические моменты сжатой и растянутой частей сечения относительно нейтральной оси.
Лит. см. при ст. Сопротивление материалов.
Л. В. Касабьян.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 22:18:55
|
|
|
|
|
|
|
|
|
|