Большая Советская Энциклопедия (цитаты)

Градусные измерения

Градусные измерения (далее Г) высокоточные астрономические и геодезические измерения, выполняемые на земной поверхности для определения фигуры и размеров Земли. Современные Г представляют астрономо-геодезические сети, служащие для обоснования топографических съемок (см. Топография).

  Геометрические основы Г сложились в глубокой древности, когда возникло учение о шарообразности Земли и появилась практическая необходимость в определении радиуса земного шара для нужд астрономии, геодезии, географии и картографии. Первоначально Г заключались в измерении линейной длины дуги меридиана между двумя точками А и В, а также в измерениях в этих точках зенитного расстояния z (см. Небесные координаты) какого-нибудь небесного светила s в меридиане (рис. 1). Путем сопоставления линейной длины дуги меридиана и соответствующего ей угла при центре Земли, равного разности широт конечных точек этой дуги и определяемого по формуле:

j2 - j1 = z2 - z1,

определялась длина D дуги земного меридиана:



откуда и возникло понятие об измерении градуса земной окружности или о Г Этим же способом определялся и радиус R земного шара по формуле:



  Первое в истории определение радиуса земного шара методом Г было произведено жившим в Египте греческим ученым Эратосфеном около 250 до н. э. Зная, что в полдень в дни летнего солнцестояния Солнце в Сиене (ныне Асуан) освещает дно глубоких колодцев, т. е. находится в зените, а в Александрии отклоняется от зенита на 1/50 часть окружности, он определил, что измеряемое в центре Земли угловое расстояние между этими городами равно 7°12". Линейное же расстояние между теми же городами, считая их лежащими на одном и том же меридиане, он определил по времени и скорости движения торговых караванов и принял равным 5 тыс. египетских стадий. Отсюда он нашел, что радиус земного шара равен 39 790 стадий, т. е. 6311 км.

  Одно из последующих Г было произведено араб. учеными в 827 по приказу багдадского халифа Мамуна на равнине между рр. Тигром и Евфратом под широтой около 36° и основывалось на определении линейной дуги меридиана путем непосредственных измерений на местности и соответствующего ей угла в центре Земли по измерениям меридианных высот одних и тех же звезд в ее конечных точках. Это Г показало, что длина дуги меридиана в один градус равна 112 км, т. е. дало для своего времени достаточно точный результат.

  После изобретения голландским ученым В. Снеллиусом в 1615—17 метода триангуляции появилась возможность измерять дуги меридианов и параллелей любой длины. Применив этот метод, французский ученый Ж. Пикар в 1669—70 произвел Г по дуге меридиана от Парижа до Амьена. Для измерения углов триангуляции он впервые применил геодезические инструменты со зрительными трубами, снабженными сеткой нитей.

  Во 2-й половине 17 в. обнаружились некоторые факты и явления, которые вызвали новые научные взгляды на форму Земли как планеты, изменившие задачи Г Так, французский астроном Ж. Рише обнаружил, что в Кайенне, расположенной в Южной Америке, вблизи экватора, часы с маятником, выверенные в Париже, отстают на 21/2 мин в сутки и что для исправления их хода необходимо укоротить маятник на 3 мм. Аналогичный факт установил и английский астроном Э. Галлей на о. Св. Елены в 1677. Объясняя эти факты, исходя из закона всемирного тяготения, И. Ньютон в 1680 высказал мысль, что Земля не шар, а несколько сплюснута в направлении оси вращения и имеет вид сфероида. Предполагая, что все частицы массы Земли находятся в состоянии взаимного притяжения, Ньютон теоретически определил сжатие земного сфероида и получил величину 1/230. Голландский физик Х. Гюйгенс, предполагая, что массы Земли притягиваются только к ее центру, в 1690 также определил сжатие земного сфероида и нашел величину 1/576. В 1691 из непосредственных наблюдений было открыто сжатие планеты Юпитер и тем же самым получено наглядное доказательство возможной сфероидичности планет Солнечной системы.

  В связи с возникновением точки зрения о том, что Земля имеет форму сфероида, который в простейшем случае является эллипсоидом вращения, задача Г уже состояла в определении радиуса экватора а и полярного радиуса b Земли (рис. 2) или радиуса экватора и сжатия а земного эллипсоида, т. е. величины



  Длина дуги меридиана на эллипсоиде вращения и широты j1 и j2 ее конечных точек связаны между собой уравнением.



  Если длину дуги меридиана определить из геодезических измерений, например методом триангуляции, а широты ее конечных точек — из астрономических наблюдений, то в приведенном уравнении останутся два неизвестных а и а, характеризующих размеры земного эллипсоида. Поэтому для определения этих неизвестных в принципе достаточно выполнить Г по двум дугам меридиана в различных географических широтах. Но в действительности для этой цели используются Г по многочисленным дугам меридианов и параллелей.

  Чтобы впервые определить размеры земного сфероида, т. е. доказать сплюснутость Земли в направлении ее оси вращения и обоснованность закона всемирного тяготения, который еще вызывал много споров, французские ученые Ж. Кассини, Ж. Маральди и Ф. Лаир с 1684 по 1718 выполнили Г по меридиану от Парижа на север до Дюнкерка и на юг до Перпиньяна. Однако это Г не только не подтвердило теоретических выводов о сплюснутости Земли в направлении оси вращения, оно показало, наоборот, что она вытянута в этом направлении. Ошибочность этого вывода можно было объяснить ошибками астрономических и геодезических измерений. Но тогда это было еще непонятно и поэтому вызвало новые споры о справедливости закона всемирного тяготения.

  Для разрешения возникших споров Парижская академия наук организовала две экспедиции по Г в сильно различающихся широтах, одна из которых была направлена в Перу — к экватору, а другая в Лапландию — к Полярному кругу. Перуанская экспедиция под руководством П. Бугера при участии Ш. Кондамина и Л. Годена работала с 1735 по 1742 и измерила дугу меридиана длиной около 3°. Лапландская экспедиция под руководством П. Мопертюи при участии А. Клеро и шведского физика А. Цельсия (автора температурной шкалы) работала в 1736—37 и измерила дугу меридиана всего лишь около 1°. Результаты работ этих экспедиций и Г Кассини во окончательно доказали как сплюснутость Земли, так и обоснованность закона всемирного тяготения и имели огромное значение для развития геодезии и др. наук.

  С 1792 по 1797 по распоряжению революционного Законодательного собрания в разгар Великой французской революции было произведено значительное для своего времени Г от Дюнкерка до Барселоны. Это Г производилось под руководством Ж. Деламбра и П. Мешена и послужило в свое время основой для установления длины метра, как одной десятимиллионной части четверти дуги земного меридиана.

  С начала 19 в. астрономо-геодезические работы по программе Г стали проводиться во многих странах в целях топографического изучения и картографирования их территорий. С разработкой методов и изобретением приборов для определения разностей долгот стали развиваться Г и вдоль земных параллелей. К настоящему времени Г произведены во всех странах Европы. Начатые в 1800 английскими геодезистами астрономо-геодезические работы в странах Индостана постепенно превратились в Г и охватили значительные территории этих стран. Предпринятые в 30-х гг. 19 в. астрономо-геодезические работы позднее приобрели характер Г в США. Они связаны ныне (2-я пол. 20 в.) с аналогичными работами в Канаде и Мексике, а также в некоторых странах Южной Америки. В 1883 английскими геодезистами было начато в Африке Г от мыса Доброй Надежды до Каира, которое завершилось вскоре после 2-й мировой войны. В середине 20 в. начались работы по Г в Китае, Австралии и др. странах. Начатые в конце 20-х гг. 20 в. астрономо-геодезические работы в СССР привели к современным Г на обширных пространствах Европы и Азии.

  В России Г были начаты в 1816 К. И. Теинером в западных пограничных районах и В. Я. Струве в прибалтийских губерниях. Развитие этих работ завершилось измерением дуги меридиана от устья Дуная до берегов Северного Ледовитого океана длиной около 25°20" по широте. В 19 веке в России были произведены и другие астрономо-геодезические работы, которые позднее были заменены новыми.

  По мере накопления материалов Г с начала 19 в. были произведены различные определения размеров земного эллипсоида. К середине 19 в. в этих определениях обнаружились значительные расхождения, которые не могли быть объяснены ошибками Г Пытаясь объяснить эти разногласия, русский геодезист Ф. Ф. Шуберт в 1859 высказал мысль о возможной трехосности Земли и впервые определил размеры земного эллипсоида с тремя неравными осями. Но представление Земли в виде трехосного эллипсоида не устранило противоречий в результатах различных Г Отсюда возникло понимание, что Земля имеет сложный вид, и ее фигура, по предложению нем. физика И. Листинга в 1873, была названа геоидом. С тех пор стали считать, что задача Г состоит в определении размеров земного сфероида, наиболее правильно представляющего фигуру геоида, и отступлений геоида от этого сфероида. Но оказалось, что изучение фигуры геоида требует данных о внутреннем строении Земли и связано со значительными трудностями. Чтобы избежать их, сов. геодезист М. С. Молоденский в 1945 разработал теории и методы определения фигуры физической поверхности и внешнего гравитационного поля Земли.

  В СССР были проведены новые Г и связанные с ними гравиметрические работы. Широкое развитие получили также исследования по определению фигуры, размеров и гравитационного поля Земли. В 1940 Ф. Н. Красовский и А. А. Изотов получили весьма важные данные о размерах земного эллипсоида, который под названием эллипсоида Красовского теперь применяется в геодезических работах СССР и др. социалистических стран (см. Красовского эллипсоид).

  В настоящее время собственно Г используются преимущественно только для определения размеров Земли. Характеристики же фигуры Земли, а также ее гравитационного поля определяют по результатам измерений силы тяжести (см. Гравиметрия) и наблюдений движения искусственных спутников Земли (ИСЗ) и дальних космических ракет (см. Спутниковая геодезия). При одновременном же определении фигуры, размеров и гравитационного поля Земли используют совместно всю совокупность данных Г, измерений силы тяжести и наблюдений движения спутников.

  Данные о фигуре, размерах и гравитационном поле Земли имеют большое значение для астрономии, геодезии, картографии и др. отраслей знания. Они входят в состав астрономических и геодезических постоянных и широко используются для расчетов по запуску ИСЗ и дальних космических ракет.

  Лит.: Струве В. Я., Дуга меридиана в 25° 20" между Дунаем и Ледовитым морем, т. 1—2, СПБ, 1861; Витковский В. В., Практическая геодезия, 2 изд., СПБ., 1911; Деламбр Ж. и Мешен П., Основы метрической десятичной системы или измерение дуги меридиана, заключенного между параллелями Дюнкерка и Барселоны, пер. с франц., М. — Л., 1926; Михайлов А. А., Курс гравиметрии и теории фигуры Земли, 2 изд., М., 1939; Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Изотов А. А., Форма и размеры Земли по современным данным, "Тр. Центрального научно-исследовательского института геодезии, аэросъемки и картографии", 1950, в. 73; Молоденский М. С., Юркина М. И. и Еремеев В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, там же, 1960, в. 131; Куликов К. А., Новая система астрономических постоянных, М., 1969.

  А. А. Изотов.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 21:05:31