Большая Советская Энциклопедия (цитаты)

Голография

Голография (далее Г) (от греч. hólos — весь, полный и ...графия), метод получения объемного изображения объекта, основанный на интерференции волн. Идея Г была впервые высказана Д. Габором (Великобритания, 1948), однако техническая реализация метода оказалась чрезвычайно сложной и Г не получила распространения. Только с появлением лазеров открылись многочисленные и разнообразные возможности практического использования Г в радиоэлектронике, оптике, физике и различных областях техники.

  Принцип Г Обычно для получения изображения какого-либо объекта фотографическим методом пользуются фотоаппаратом, который фиксирует на фотопластинке излучение, рассеиваемое объектом. Каждая точка объекта в этом случае является центром рассеяния падающего света; она посылает в пространство расходящуюся сферическую световую волну, которая фокусируется с помощью объектива в небольшое пятнышко на светочувствительной поверхности фотопластинки. Так как отражательная способность объекта меняется от точки к точке, то интенсивность света, падающего на соответствующие участки фотопластинки, оказывается различной. Поэтому на фотопластинке возникает изображение объекта. Это изображение складывается из получающихся на каждом участке светочувствительной поверхности изображений соответствующих точек объекта. При этом трехмерные объекты регистрируются в виде плоских двухмерных изображений.

  В процессе фотографирования на фотопластинке фиксируется лишь распределение интенсивности, то есть амплитуды электромагнитной волны, отраженной от объекта (интенсивность пропорциональна квадрату амплитуды). Однако световая волна при отражении от объекта изменяет не только амплитуду, но и фазу в соответствии со свойствами поверхности объекта в данной точке.

  Г позволяет получить более полную информацию об объекте, так как представляет собой процесс регистрации на фотопластинке не только амплитуд, но и фаз световых волн, рассеянных объектом. Для этого на фотопластинку одновременно с волной, рассеянной объектом (сигнальная волна), необходимо направить вспомогательную волну, идущую от того же источника света (лазера), с фиксированной амплитудой и фазой (опорная волна, рис. 1).

  Интерференционная картина (чередование темных и светлых полос или пятен), возникающая в результате взаимодействия сигнальной и опорной волн, содержит полную информацию об амплитуде и фазе сигнальной волны, то есть об объекте. Зафиксированная на светочувствительной поверхности интерференционная картина после проявления называется Голограммой. Если рассматривать голограмму в микроскоп, то в простейшем случае видна система чередующихся светлых и темных полос (рис. 2). Интерференционный узор реальных объектов весьма сложен.

  Для того чтобы увидеть изображение предмета, голограмму необходимо просветить той же опорной волной, которая использовалась при ее получении. В простейшем случае — интерференции двух плоских волн (двух параллельных пучков) — голограмма представляет собой обычную дифракционную решетку. Плоская волна, падая на такую голограмму, частично проходит сквозь нее, сохраняя прежнее направление, а частично вследствие дифракции преобразуется в две вторичные плоские волны, распространяющиеся под углом q (рис. 3). Угол q связан с шагом решетки d и длиной световой волны l формулой:



Как видно из рисунка, волна, которая идет "вниз", является как бы продолжением сигнальной волны, использовавшейся при съемке голограммы (рис. 1). Поэтому она ничем не отличается от волны, идущей от объекта при непосредственном его наблюдении. Таким образом, при просвечивании голограммы восстанавливается та же самая волна, которая исходила от объекта. В результате этого наблюдатель, смотрящий сквозь голограмму, увидит мнимое изображение объекта в том месте, где объект находился при съемке. Волна, идущая "вверх" (рис. 3), также содержит информацию об объекте и образует его действительное изображение.

  Голограмма точки. Пусть свет от лазера падает на точечный объект А и на плоский отражатель, который создает опорную волну (рис. 4). Рассеянная от точечного объекта волна и опорная волна падают на фоточувствительный слой, на котором регистрируется интерференционная картина. Голограмма в этом случае образуется в результате интерференции сферической сигнальной волны с плоской опорной волной и представляет собой систему концентрических темных и светлых колец. Поскольку расстояние между интерференционными кольцами равно , то чередование светлых и темных колец становится более частым при приближении к нижнему краю голограммы (рис. 5).

  При просвечивании голограммы плоской опорной волной в результате дифракции возникают две сферические волны. Эти волны формируют действительное и мнимое изображения точки А, которые можно наблюдать под различными углами (рис. 5). Расходящаяся сферическая волна создает мнимое изображение A" и наблюдатель, воспринимающий эту волну, видит восстановленное изображение A" за голограммой в том же месте, где находился реальный объект А. Вторая сходящаяся сферическая волна // создает действительное изображение объекта А", которое расположено перед голограммой.

  Объемность голографических изображений. Повторяя приведенные рассуждения для каждой из точек объекта, состоящего, например, из 4 точек, можно убедиться, что интерференционная картина, которая фиксируется на голограмме, будет содержать полную информацию о всех 4 точках. При просвечивании голограммы опорным лучом появятся 2 изображения — мнимое и действительное, причем оба изображения будут восприниматься наблюдателем как объемные.

  Мнимое изображение наблюдается, если смотреть сквозь голограмму, как в окно (рис. 6). Действительно, в положениях б, в, г мы увидим точку 1, а в положениях в, г, д — точку 3; в, положениях в, г наблюдатель увидит одновременно точки 1, 3 и точки 2, 4, которые расположены между ними, то есть весь объект. Если наблюдатель переводит взгляд с точки 2 на точку 3 (или 4), он должен изменить фокусировку глаз, а если наблюдатель переменит свое место, например от в к г, то изменится и перспектива изображения. Более того, в некоторых положениях наблюдатель не увидит точки 4, так как она будет заслонена точкой 2 объекта, расположенной ближе к наблюдателю. Таким образом, голографическое изображение является объемным, причем зрительное восприятие этого изображения ничем не отличается от восприятия исходного объекта. Фотографируя мнимое изображение, можно, в зависимости от места расположения фотоаппарата и его фокусировки, зафиксировать все эти особенности на снимках (рис. 7). Экспериментально такие голограммы впервые получили амер. физики Э. Лэйтс и Ю. Упатниекс в 1962.

  Действительное изображение также трехмерно и обладает всеми упомянутыми свойствами; оно как бы висит перед голограммой, но наблюдать его несколько труднее.

  Свойства голограмм. Голографическое изображение точки представляет собой собой пятно, диаметр d которого равен: , где D — размер голограммы, l — длина волны, Н — расстояние объекта до голограммы. Величина d характеризует разрешающую способность голографического изображения, то есть различимость 2 близких точек объекта. Одно из замечательных свойств голограммы состоит в том, что каждый ее участок содержит информацию обо всем объекте и поэтому позволяет восстановить полное изображение объекта (при уменьшении размера голограммы D ухудшается лишь разрешающая способность изображения). Следствием этого является высокая надежность хранения информации, записанной в виде голограммы.

  При просвечивании голограмм можно изменить длину опорной волны l. В этом случае наблюдаются 2 изображения, но на другом расстоянии " от голограммы, определяемом формулой:



Здесь Н — расстояние между объектом и голограммой при съемке, l1 — длина опорной волны при съемке, а l2 — при просмотре голограммы. Таким способом можно визуализировать (сделать видимыми) изображения объектов, записываемых в виде голограмм, полученных с помощью радиоволн или инфракрасного, ультрафиолетового и рентгеновского излучений.

  При просмотре голограмм можно менять не только длину опорной волны, но и ее волновой фронт. Освещая, например, голограмму расходящейся сферической волной, можно наблюдать увеличенное изображение предмета. На этом основано устройство голографического микроскопа.

  Возможности Г существенно расширяются, если голограмму записывать на толстослойной эмульсии, что было впервые предложено Ю.Н. Денисюком (СССР, 1962). В этом случае интерференционная картина получается трехмерной, благодаря чему голограмма приобретает новые свойства. В частности, такая голограмма позволяет наблюдать изображение объекта при освещении ее немонохроматическим (белым) светом.

  Можно получить цветное голографическое изображение предмета, если при изготовлении голограммы использовать 3 монохроматических лазера, излучающие разные длины волн (например, синий, желтый и красный лучи). В этом случае запись может производиться на обычную эмульсию, и голограмма по внешнему виду не будет отличаться от обычной черно-белой. Цветное изображение предмета наблюдается при одновременном освещении голограммы 3 опорными волнами, соответствующими указанным цветам.

  Качество голографических изображений зависит от монохроматичности излучения лазеров и разрешающей способности фотоматериалов, используемых при получении голограмм. Если спектр излучения лазера широкий, то при съемке голограммы каждой определенной длине волны этого спектра будет соответствовать свой интерференционный узор и результирующая интерференционная картина будет нечеткой и размытой. Поэтому при изготовлении голограмм применяются лазеры с очень узкой спектральной линией излучения.

  Качество интерференционной картины определяется также разрешающей способностью фотоматериала, то есть числом интерференционных линий, которое можно фиксировать на 1 мм. Чем больше это число, тем лучше качество восстановленного изображения. В связи с этим в Г применяются фотоматериалы, имеющие высокое разрешение (1000 линий на 1 мм и более).

  Наиболее часто используемые фотографические эмульсии представляют собой взвесь светочувствительных зерен, расположенных на некотором расстоянии друг от друга. Дискретная структура фотоэмульсий приводит к тому, что на голограмме записывается не непрерывное распределение яркости интерференционной картины, а лишь ее "отрывки". Это создает световой фон, поскольку при просвечивании голограммы свет рассеивается на проявленных зернах. В связи с этим ведутся широкие поиски беззернистых фотоматериалов, которые, кроме того, позволяли бы производить стирание и повторную запись информации, что очень важно для ряда голографических применений. Уже получены первые голограммы на мелкодоменных пленках, фотохромных стеклах и пленках, на и на других материалах.

  На качество голографических изображений влияют также условия съемки. При использовании лазеров непрерывного излучения время экспозиции меняется от долей секунды до десятков минут (в зависимости от размеров объекта и голограммы). В течение этого времени недопустимы какие-либо смещения объекта, фотопластинок и оптических элементов схемы на расстояния, сравнимые с длиной волны l. В противном случае интерференционная картина будет смазана. Эти трудности исключаются при использовании импульсных лазеров, обеспечивающих мощное световое излучение в течение очень коротких промежутков времени (до 10-9 сек). При таком малом времени экспозиции легко получать голограммы объектов, движущихся со скоростями порядка 1000 м/сек (рис. 8).

  Применение Г Импульсная Г открывает возможность фиксировать и анализировать быстро, протекающие процессы. Большой интерес, например, для ядерной физики и физики элементарных частиц представляет изучение следов (треков) частиц в трековых камерах. Для этой цели пока применяется стереоскопическая съемка. Голографические методы оказываются здесь весьма эффективными, поскольку они позволяют зафиксировать информацию о всем объеме камеры. При восстановлении можно рассматривать изображение в различных сечениях камеры, что позволяет легко разделить треки, соответствующие разным частицам. Число частиц, регистрируемых на голограмме, может быть очень большим (порядка 1000). Аналогично можно изучать динамику распределения неоднородностей в туманах, жидкостях и других прозрачных средах.

  Перспективно применение импульсной Г в интерферометрии. На одной и той же фотопластинке в различные моменты времени записываются 2 голограммы исследуемого объекта. При восстановлении обе волны, несущие информацию об объекте, накладываются друг на друга. Если за время между экспозициями с объектом произошли какие-либо изменения, то на восстановленном изображении появляется система интерференционных полос. Расшифровывая полученную интерференционную картину, можно определить происшедшие изменения. Этот метод позволяет измерять очень небольшие (порядка долей мкм) деформации объектов со сложной формой поверхности, обусловленные вибрацией, нагреванием и т. п. Его можно использовать также для неразрушающего контроля изделий, для исследования взрывов, ударных волн, образующихся, например, при полете пули (рис. 8), для изучения потоков газа в сверхзвуковом сопле, для исследования плазмы и т. д.

  Применение Г открывает принципиальную возможность создания объемного цветного телевидения. Действительно, голограмму объекта можно зафиксировать на светочувствительной поверхности передающей телевизионной трубки, а затем передать ее по радио- или оптическому каналу. На приемном конце голограмму можно восстановить, записав ее, например, на светочувствительной пленке. Это позволит наблюдать трехмерное изображение объекта. Реализация такой системы даже для специальных применений пока связана с большими техническими трудностями (разрешающая способность телевизионных передающих трубок очень низка, что затрудняет восстановление объемных изображений; отсутствуют достаточно мощные лазеры видимого диапазона, которые необходимы для получения голограмм реальных объектов, и т. п.).

  Методы Г открывают возможность создания новых систем памяти, представляющих большой интерес для прогресса вычислительной техники. Г позволяет реализовать плотность записи порядка 107—108 двоичных единиц информации на 1 см2 светочувствительной поверхности, что на несколько порядков выше, чем у существующих систем памяти. Кроме того, голографическая запись характеризуется высокой надежностью; выход из строя небольших участков голограммы приводит лишь к некоторому ухудшению качества воспроизведения (см. выше). Голографические устройства памяти с большой емкостью были предложены в 1966 А. Л. Микаэляном и В. И. Бобриневым (СССР). Они основаны на записи большого числа голограмм на одну и ту же поверхность (или объем) фотоматериала. Для того чтобы изображения не накладывались друг на друга, при записи каждого из них изменяют угол падения опорной волны на светочувствительный слой (рис. 9). Опорный луч, прежде чем попасть на голограмму, проходит через отклоняющую систему, которая устанавливает направление опорного луча в соответствии с введенным в нее адресом. Каждому адресу соответствует свое направление опорного луча. Сигнальный луч делится на n каналов, в каждый из которых включен модулятор М. При наличии управляющего напряжения он пропускает луч лазера, а при отсутствии напряжения становится непрозрачным. На выходе модуляторов возникает комбинация n лучей, которые вместе с опорным лучом записываются в виде голограммы. При накоплении информации в запоминающем устройстве на адресный вход подаются поочередно все адреса, а на сигнальный — соответствующие числа.

  При считывании информации отклоняющая система устанавливает угол падения считывающего опорного луча, соответствующий заданному адресу, и голограмма формирует изображение в виде системы ярких точек, количество и взаимное расположение которых определяется комбинацией включенных при записи модуляторов. Это изображение проецируется на систему фотоприемников, на выходе которых сигналы дают считанное число. Уже удалось записать последовательно до 1000 голограмм 32-разрядных чисел на участке поверхности с диаметром ок. 2 мм.

  Другой вариант голографического запоминающего устройства позволяет записывать большие количества чисел, которые предварительно преобразуются в матрицы-транспаранты (рис. 10). Каждая матрица записывается в виде голограммы на небольшом участке фотопластинки (порядка 1—2 мм). Переключение луча с одной голограммы на другую осуществляется двухкоординатной системой отклонения, причем при любых углах отклонения опорный и сигнальные лучи совмещены на голограмме. При считывании информации каждая голограмма освещается опорным лучом, восстанавливающим изображение соответствующей матрицы (рис. 10). Это изображение падает на мозаику фотодиодов, соединенных таким образом, чтобы можно было выбрать любое число из восстановленной матрицы. Время считывания произвольного числа определяется мощностью лазера и чувствительностью фотодиодов и может быть сделано очень малым (10-7—10-8 сек). Емкость голографических систем памяти при произвольной выборке информации с высокой скоростью может достигать 109 двоичных единиц.

  Перспективна возможность использования принципов Г для создания специальных вычислительных устройств, в которых проводятся те или иные математические операции над информацией, записанной в виде голограммы. Наибольшее внимание при этом уделяется созданию устройств для поиска заданной информации и опознавания образов. Термин "опознавание" означает сравнение изображений 2 объектов и установление соответствия между ними. Такие устройства могут применяться для автоматического чтения информации, для классификации различных объектов, для дешифровки сложных изображений и т. д. Возможность опознавания образов основана на свойстве голограмм восстанавливать изображение объекта только в том случае, если считывающий пучок света совпадает по форме с опорным лучом, использовавшимся при съемке. Пусть, например, имеется голограмма, на которой записана интерференция между светом точечного источника и светом, прошедшим через транспарант с буквой "Т" (рис. 11). Если затем голограмму освещать светом, проходящим через транспарант, на котором записаны разные буквы, то только в случае той же буквы "Т" мы увидим изображение яркой точки. Такая голограмма является своеобразным фильтром, с помощью которого можно, например, установить наличие буквы "Т" в каком-либо сложном тексте и быстро определить число этих букв. Этот способ был, в частности, опробован для опознавания отпечатков пальцев. Для одного из восьми сходных отпечатков был изготовлен голографический фильтр, с помощью которого производилось опознавание в рассмотренной выше установке. Фотографические копии всех отпечатков последовательно вводились в схему, и наблюдалось изображение в плоскости опознавания. Оказалось, что яркая точка возникала только в одном случае, что говорит о высокой избирательности данного метода. Важно отметить, что достаточно уверенное опознавание происходит и в том случае, когда имеется лишь часть отпечатка. Например, при наличии половины отпечатка яркость изображения точки уменьшается всего на 10%. Экспериментально установлено, что опознавание естественных объектов сложной формы (например, отпечатков пальцев) происходит более надежно, чем знаков, букв или простых фигур. Например, при опознавании букв возможны ошибки по сходности начертания (О и С, П и Е и др.).

  С применением Г для опознавания образов тесно связано использование ее для кодирования информации. В этом случае при съемке голограммы в канале опорного луча устанавливается специальный элемент (например, диффузное стекло), создающий сложную форму волнового фронта. Чтобы наблюдать восстановленное изображение, необходимо использовать ту же самую опорную волну. Это оказывается возможным только при использовании того же экземпляра диффузного стекла, который применялся при съемке голограммы. Высокая степень кодирования связана с тем, что опорный луч, прошедший через диффузное стекло, превращается в протяженный монохроматический источник света, который является набором большого числа точечных излучателей, имеющих определенное соотношение амплитуд и фаз. Поэтому вероятность того, что различные экземпляры диффузных стекол будут одинаковыми в указанном смысле, чрезвычайно мала. Большой интерес представляет применение Г для формирования заданных волновых фронтов. Известно, например, что оптические объективы не могут быть сделаны идеальными и всегда вносят искажения в формируемые ими изображения. Для каждого объектива можно изготовить голограмму, корректирующую эти искажения. С усовершенствованием техники Г окажется возможной реализация специальных "голографических объективов", представляющих собой набор заранее изготовленных голограмм, заменяющих линзовые объективы и свободных от аберраций оптических систем.

  Голографический метод применим также в случаях звуковых и ультразвуковых волн. Если на объект, помещенный в непрозрачную жидкость, воздействовать звуковым генератором, то на поверхности жидкости можно создать звуковую голограмму (рис. 12). Для этого необходим вспомогательный источник звука, создающий опорную волну. Если звуковую голограмму, образующуюся в результате интерференции звуковых волн (опорной и сигнальной), осветить лазером, то можно увидеть объемное изображение предмета. Голографическое "звуковидение" важно, в частности, для исследований внутренних органов животных и людей.

  Лит.: Лэйт Э. и Упатниекс Ю., Фотографирование с помощью лазеров, "Успехи физических наук", 1965, т. 87, в. 3; Сороко Л. М., Г и интерференционная обработка информации, там же, 1966, т. 90, в. 1; Микаэлян А. Л., Г, М., 1968; Гудмен Д., Введение в Фурье-оптику, пер. с англ., М., 1970.

  А. Л. Микаэлян.



Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 10:42:16