Большая Советская Энциклопедия (цитаты)

Гипергеометрический ряд

Гипергеометрический ряд (далее Г), ряд вида

 

  Г был впервые изучен Л. Эйлером (1778). Разложение многих функций в бесконечные ряды представляет собой частные случаи Г Например:

  (1 + z) n = (—n, b; b; —z),

  ln (1 + z) = z (1, 1; 2; —z),

 

  Г имеет смысл, если g не равно нулю или целому отрицательному числу; он сходится при |z| < 1. Если, кроме того, g—a—b >0, то Г сходится и при z = 1. В этом случае справедлива формула Гаусса:

  (a, b; g; 1) = G(g)G(g—a—b)/G(g—a)G(g—b),

  где Г (z) — гамма-функция. Аналитическая функция, определяемая для |z| < 1 с помощью Г, называется гипергеометрической функцией и играет важную роль в теории дифференциальных уравнений.


Для поиска, наберите искомое слово (или его часть) в поле поиска


Новости 22.01.2025 19:58:16