|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Гальваномагнитные явления | Гальваномагнитные явления (далее Г), совокупность явлений, связанных с действием поля на электрические (гальванические) свойства твердых проводников (металлов и полупроводников), по которым течет ток. Наиболее существенны Г в поле Н, перпендикулярном току (поперечные Г). К ним относится эффект Холла — возникновение разности потенциалов (эдс Холла h) в направлении, перпендикулярном полю Н и току j (j — плотность тока), и изменение электрического сопротивления проводника в поперечном поле. Разность Dr между сопротивлением r проводника в поле и без поля часто называется магнетосопротивлением.
Мерой эффекта Холла служит постоянная Холла:
Здесь d — расстояние между электрическими контактами, с помощью которых измеряют эдс Холла. Постоянная Холла в широких пределах не зависит от величины поля (а для металлов и от температуры). Линейная зависимость от поля Н используется для измерения полей (см. Магнитометр).
В электронных проводниках, в которых ток переносится "свободными" электронами (электронами проводимости), согласно простейшим представлениям, постоянная Холла выражается через число электронов проводимости n в см3. R = 1/nec (е — заряд электрона, с — скорость света). Поэтому измерение R служит одним из основных методов оценки концентрации электронов проводимости n в электронных проводниках. У электронных проводников R имеет знак минус. У полупроводников с дырочной проводимостью и у некоторых металлов постоянная Холла имеет знак плюс, соответствующий положительно заряженным носителям тока — дыркам (см. Твердое тело). Т. к. эдс Холла меняет знак при изменении направления поля на обратное, то эффект Холла называется нечетным Г
Относительное изменение сопротивления в поперечном поле (Dr/r)^, в обычных условиях (при комнатной температуре) очень мало: у хороших металлов (Dr/r)^ ~ 10-4 при ~ 104 э. Важным исключением является (), у которого (Dr/r)^ " 2 при Н = 3 · 104э. Это позволяет его использовать для измерения поля. У полупроводников изменение сопротивления несколько больше, чем у металлов: (Dr/r)^ " 10-2—10-1 и существенно зависит от концентрации примесей в полупроводнике и от температуры. Например, у достаточно чистого (Dr/r)^ " 3 при Т = 90 К и = 1,8 · 10-4э.
Понижение температуры и увеличение поля приводят к увеличению (Dr/r)^. П. Л. Капица (1929), используя поля в несколько сот тысяч э и сравнительно низкие температуры (температура жидкого обнаружил существенное увеличение сопротивления большого числа металлов и показал, что в широком интервале полей (Dr/r)^ линейно зависит от поля (закон Капицы).
В слабых полях (Dr/r)^ пропорционально 2. Коэффициент пропорциональности между (Dr/r)^ и 2 положителен, т. е. сопротивление растет с увеличением поля. Изменение сопротивления в поле называется четным Г, т. к. (Dr/r)^ не изменяет знак при изменении направления поля Н на обратное.
Так как сопротивление весьма чувствительно к качеству образца (к количеству примесей и дефектов решетки), а также к температуре, то каждое измерение приводит к новой зависимости r от Н. Имеющиеся экспериментальные данные для металлов удобно описывать, выразив (Dr/r)^ в виде функции от Нэф = Hr300/r, где r300 — сопротивление данного металла при комнатной температуре (Т = 300К), а r — при температуре эксперимента. При этом различные данные, относящиеся к одному металлу, укладываются на одну кривую (правило Колера).
Основная причина Г —искривление траекторий носителей тока (электронов проводимости и дырок) в поле (см. Лоренца сила). Траектория носителей в поле может существенно отличаться от траектории свободного электрона в поле — круговой спирали, навитой на силовую линию. Разнообразие траекторий носителей тока у различных проводников — причина разнообразия Г, а зависимость траектории от направления поля — причина анизотропии Г в монокристаллах. Мерой влияния поля на траекторию электрона является отношение длины свободного пробега l электрона к радиусу кривизны его траектории в поле Н: rн = cp/eH (р — импульс электрона). По отношению к Г поле считают слабым, если Н £ Но = el/cp, и сильным, если Н ³ Н0.
При комнатных температурах для различных металлов и хорошо проводящих полупроводников 0 ~ 105—107э, для плохо проводящих полупроводников Н0~108—109э. Понижение температуры увеличивает длину пробега l и потому уменьшает значение 0. Это позволяет, используя низкие температуры и обычные поля (~104э), осуществлять условия, соответствующие сильному полю Н >> Н0.
Измерение сопротивления монокристаллических образцов металлов в сильных полях — один из важных методов изучения металлов. Исследуется зависимость сопротивления от величины поля и его направления относительно осей. Теория Г показала, что зависимость сопротивления от поля Н существенно связана с энергетическим спектром электронов. Резкая анизотропия сопротивления в сильных полях (у , , , и др.) означает существ, анизотропию Ферми поверхности. И, наоборот, небольшая анизотропия сопротивления в поле означает практическую изотропию поверхности При этом, если с ростом поля для всех направлений r не стремится к насыщению (, и др.), то электроны и дырки содержатся в проводниках в равных количествах. Стремление сопротивления к насыщению означает, что преобладают либо электроны, либо дырки (тип носителей может быть установлен по знаку постоянной Холла).
Наряду с поперечными Г наблюдается также небольшое изменение сопротивления металлов в поле, параллельном току : (Dr/r)||, наз. продольным гальваномагнитным эффектом. В сильных полях обнаруживаются квантовые эффекты, проявляющиеся в немонотонной (осциллирующей) зависимости постоянной Холла и сопротивления от поля Н.
При изучении Г в тонких пленках и проволоках имеет место зависимость (Dr/r)^ и (Dr/r)|| от размеров и формы образца (размерные эффекты). С ростом Н при rn £ d (d — наименьший размер образца) эта зависимость исчезает. В ферромагнитных металлах и полупроводниках (ферритах) Г обладают рядом специфических особенностей, обусловленных существованием самопроизвольной намагниченности в отсутствие поля. Например, эдс Холла в ферромагнетиках зависит не только от среднего поля Н в образце, но и от намагниченности, сопротивление в слабых полях иногда убывает (см. Ферромагнетизм, Холла эффект).
Лит.: Лифшиц И. М., Каганов М. И., Некоторые вопросы электронной теории металлов, "Успехи физических наук", 1965, т. 87, в. 3; 3айман Дж., Принципы теории твердого тела, пер. с англ., М., 1966
М. И. Каганов. |
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 17:02:16
|
|
|
|
|
|
|
|
|
|