|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Вероятностей теория | Вероятностей теория (далее В) математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.
Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например, , еще не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты В, которые позволяют утверждать, что вероятность наступления какого-либо события А весьма близка к единице или (что то же самое) вероятность не наступления события А весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Ниже (в разделе Предельные теоремы) показано, что имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление события А зависит от большого числа случайных, мало связанных друг с другом факторов (см. по этому поводу Больших чисел закон). Поэтому можно также сказать, что В есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов.
Предмет теории вероятностей. Для описания закономерной связи между некоторыми условиями и событием А, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:
а) при каждом осуществлении условий наступает событие А. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определенным образом.
б) При условиях событие А имеет определенную вероятность (A / ), равную р. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определенная вероятность того, что из данного количества вещества за данный промежуток времени распадется какое-либо число Назовем частотой события А в данной серии из n испытаний (то есть из n повторных осуществлений условий ) отношение h = m/n числа m тех испытаний, в которых А наступило, к общему их числу n. Наличие у события А при условиях определенной вероятности, равной р, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота события А приблизительно равна р.
Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорожденному быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.
Возможность применения методов В к изучению статистических закономерностей, относящихся к весьма далеким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о которых будет сказано ниже (см. раздел Основные понятия теории вероятностей). Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет В
Основные понятия теории вероятностей. Наиболее просто определяются основные понятия В как математической дисциплины в рамках так называемой элементарной В Каждое испытание Т, рассматриваемое в элементарной В, таково, что оно заканчивается одним и только одним из событий E1, E2,..., E (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходом Ek связывается положительное число рк - вероятность этого исхода. Числа pk должны при этом в сумме давать единицу. Рассматриваются затем события А, заключающиеся в том, что "наступает или Ei, или Ej,..., или Ek". Исходы Ei, Ej,..., Ek называются благоприятствующими А, и по определению полагают вероятность Р (А) события А, равной сумме вероятностей благоприятствующих ему исходов:
(A) = pi + ps + … + pk. (1)
Частный случай p1 = p2 =... ps = 1/ приводит к формуле
Р (А) = r/s. (2)
Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числа r исходов, благоприятствующих А, к числу s всех "равновозможных" исходов. Классическое определение вероятности лишь сводит понятие "вероятности" к понятию "равновозможности", которое остается без ясного определения.
Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i, j), где i - число очков, выпадающее на первой кости, j - на второй. Исходы предполагаются равновероятными. Событию А - "сумма очков равна 4", благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно, Р (A) = 3/36 = 1/12.
Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение). Событие В называется объединением событий A 1, A 2,..., Ar,-, если оно имеет вид: "наступает или A1, или А2,..., или Ar".
Событие С называется совмещением событий A1, А.2,..., Ar, если оно имеет вид: "наступает и A1, и A2,..., и Ar". Объединение событий обозначают знаком È, а совмещение - знаком Ç. Таким образом, пишут:
= A1 È A2 È … È Ar, = A1 Ç A2 Ç … Ç Ar.
События А и В называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего и А, и В.
С введенными операциями объединения и совмещения событий связаны две основные теоремы В - теоремы сложения и умножения вероятностей.
Теорема сложения вероятностей. Если события A1, A2,..., Ar таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.
Так, в приведенном выше примере с бросанием двух костей событие В - "сумма очков не превосходит 4", есть объединение трех несовместных событий A2, A3, A4, заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятность Р (В) равна
1/36 + 2/36 + 3/36 = 6/36 = 1/6.
Условную вероятность события В при условии А определяют формулой
что, как можно показать, находится в полном соответствии со свойствами частот. События A1, A2,..., Ar называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его "безусловной" вероятности (см. также Независимость в теории вероятностей).
Теорема умножения вероятностей. Вероятность совмещения событий A1, A2,..., Ar равна вероятности события A1, умноженной на вероятность события A2, взятую при условии, что А1 наступило,..., умноженной на вероятность события Ar при условии, что A1, A2,..., Ar-1 наступили. Для независимых событий теорема умножения приводит к формуле:
(A1 Ç A2 Ç … Ç Ar) = (A1) · (A2) · … · (Ar), (3)
то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остается справедливой, если в обеих ее частях некоторые из событий заменить на противоположные им.
Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?
Каждый исход испытания может быть обозначен последовательностью из четырех букв (напр., (у, н, н, у) означает, что при первом и четвертом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)). Всего будет 2·2·2·2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2·0,8·0,8·0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию "в цель попадают три раза" благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:
0,2·0,2·0,2·0,8 =...... =0,8·0,2·0,2·0,2 = 0,0064;
следовательно, искомая вероятность равна
4·0,0064 = 0,0256.
Обобщая рассуждения разобранного примера, можно вывести одну из основных формул В: если события A1, A2,..., An независимы и имеют каждое вероятность р, то вероятность наступления ровно m из них равна
n (m) = nmpm (1 - p) n-m; (4)
здесь nm обозначает число сочетаний из n элементов по m (см. Биномиальное распределение). При больших n вычисления по формуле (4) становятся затруднительными. Пусть в предыдущем примере число выстрелов равно 100, и ставится вопрос об отыскании вероятности х того, что число попаданий лежит в пределах от 8 до 32. Применение формулы (4) и теоремы сложения дает точное, но практически мало пригодное выражение искомой вероятности
Приближенное значение вероятности х можно найти по теореме Лапласа (см. Лапласа теорема)
причем ошибка не превосходит 0,0009. Найденный результат показывает, что событие 8 £ m £ 32 практически достоверно. Это самый простой, но типичный пример использования предельных теорем В
К числу основных формул элементарной В относится также так называемая формула полной вероятности: если события A1, A2,..., Ar попарно несовместны и их объединение есть достоверное событие, то для любого события В его вероятность равна сумме
Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытаний T1, T2,..., Tn-1, Tn, если каждый исход испытания Т есть совмещение некоторых исходов Ai, j,..., Xk, l соответствующих испытаний T1, T2,..., Tn-1, Tn. Из тех или иных соображений часто бывают известны вероятности
(Ai), (j/Ai), …, (l/Ai Ç j Ç … Ç Xk). (5)
По вероятностям (5) с помощью теоремы умножения могут быть определены вероятности Р (Е) для всех исходов Е составного испытания, а вместе с тем и вероятности всех событий, связанных с этим испытанием (подобно тому, как это было сделано в разобранном выше примере). Наиболее значительными с практической точки зрения представляются два типа составных испытаний: а) составляющие испытания не зависимы, то есть вероятности (5) равны безусловным вероятностям (Ai), (j),..., (l); б) на вероятности исходов какого-либо испытания влияют результаты лишь непосредственно предшествующего испытания, то есть вероятности (5) равны соответственно: (Ai), (j /Ai),..., (i / Xk). В этом случае говорят об испытаниях, связанных в цепь Маркова. Вероятности всех событий, связанных с составным испытанием, вполне определяются здесь начальными вероятностями Р (Аi) и переходными вероятностями (j / Ai),..., (l / Xk) (см. также Марковский процесс).
Случайные величины. Если каждому исходу Er испытания Т поставлено в соответствие число х,, то говорят, что задана случайная величина X. Среди чисел x1, х2,......, xs могут быть и равные; совокупность различных значений хг при r = 1, 2,..., s называют совокупностью возможных значений случайной величины. Набор возможных значений случайной величины и соответствующих им вероятностей называется распределением вероятностей случайной величины (см. Распределения). Так, в примере с бросанием двух костей с каждым исходом испытания (i, j) связывается случайная величина Х = i + j - сумма очков на обеих костях. Возможные значения суть 2, 3, 4,..., 11, 12; соответствующие вероятности равны 1/36, 2/36, 3/36,..., 2/36, 1/36.
При одновременном изучении нескольких случайных величин вводится понятие их совместного распределения, которое задается указанием возможных значений каждой из них и вероятностей совмещения событий
{X1 = x1}, {X2 = x2}, …, {Xn = xn}, (6)
где xk - какое-либо из возможных значений величины Xk. Случайные величины называются независимыми, если при любом выборе xk события (6) независимы. С помощью совместного распределения случайных величин можно вычислить вероятность любого события, определяемого этими величинами, например события a < X1 + Х2 +... + Xn < b и т.п.
Часто вместо полного задания распределения вероятностей случайной величины предпочитают пользоваться небольшим количеством числовых характеристик. Из них наиболее употребительны математическое ожидание и дисперсия.
В число основных характеристик совместного распределения нескольких случайных величин, наряду с математическими ожиданиями и дисперсиями этих величин, включаются коэффициенты корреляции и т.п. Смысл перечисленных характеристик в значительной степени разъясняется предельными теоремами (см. раздел Предельные теоремы).
Схема испытаний с конечным числом исходов недостаточна уже для самых простых применений В Так, при изучении случайного разброса точек попаданий снарядов вокруг центра цели, при изучении случайных ошибок, возникающих при измерении какой-либо величины, и т.д. уже невозможно ограничиться испытаниями с конечным числом исходов. При этом в одних случаях результат испытания может быть выражен числом или системой чисел, в других - результатом испытания может быть функция (например, запись изменения давления в данной точке атмосферы за данный промежуток времени), системы функций и т.п. Следует отметить, что многие данные выше определения и теоремы с незначительными по существу изменениями приложимы и в этих более общих обстоятельствах, хотя способы задания распределений вероятностей изменяются (см. Распределения, Плотность вероятности).
Наиболее серьезное изменение претерпевает определение вероятности, которое в элементарном случае давалось формулой (2). В более общих схемах, о которых идет речь, события являются объединениями бесконечного числа исходов (или, как говорят, элементарных событий), вероятность каждого из которых может быть равна нулю. В соответствии с этим свойство, выраженное теоремой сложения, не выводится из определения вероятности, а включается в него.
Наиболее распространенная в настоящее время логическая схема построения основ В разработана в 1933 советским математиком А. Н. Колмогоровым. Основные черты этой схемы следующие. При изучении какой-либо реальной задачи - методами В прежде всего выделяется множество элементов u, называемых элементарными событиями. Всякое событие вполне описывается множеством благоприятствующих ему элементарных событий и потому рассматривается как некое множество элементарных событий. С некоторыми из событий А связываются определенные числа Р (A), называемые их вероятностями и удовлетворяющие условиям
1. 0 £ Р (А) £ 1,
2. () = 1,
3. Если события A1,..., An попарно несовместны и А - их сумма, то
Р (А) = Р (A1) + (A2) + … + Р (An).
Для создания полноценной математической теории требуют, чтобы условие 3 выполнялось и для бесконечных последовательностей попарно несовместных событий. Свойства неотрицательности и аддитивности есть основные свойства меры множества. В может, таким образом, с формальной точки зрения рассматриваться как часть меры теории. Основные понятия В получают при таком подходе новое освещение. Случайные величины превращаются в измеримые функции, их математические ожидания - в абстрактные интегралы Лебега и т.п. Однако основные проблемы В и теории меры различны. Основным, специфическим для В является понятие независимости событий, испытаний, случайных величин. Наряду с этим В тщательно изучает и такие объекты, как условные распределения, условные математические ожидания и т.п.
Предельные теоремы. При формальном изложении В предельные теоремы появляются в виде своего рода надстройки над ее элементарными разделами, в которых все задачи имеют конечный, чисто арифметический характер. Однако познавательная ценность В раскрывается только предельными теоремами. Так, Бернулли теорема показывает, что при независимых испытаниях частота появления какого-либо события, как правило, мало отклоняется от его вероятности, а Лапласа теорема указывает вероятности тех или иных отклонений. Аналогично смысл таких характеристик случайной величины, как ее математическое ожидание и дисперсия, разъясняется законом больших чисел и центральной предельной теоремой (см. Больших чисел закон. Предельные теоремы теории вероятностей). Пусть< X1, Х2,..., Xn,... (7)
- независимые случайные величины, имеющие одно и то же распределение вероятностей с EXk = а, DXk = s2 и n - среднее арифметическое первых n величин из последовательности (7):
n = (X1 + X2 + … +Xn)/n.
В соответствии с законом больших чисел, каково бы ни было e > 0, вероятность неравенства |n - a| £ e имеет при n ®¥ пределом 1, и, таким образом, n как правило, мало отличается от а. Центральная предельная теорема уточняет этот результат, показывая, что отклонения n от а приближенно подчинены нормальному распределению со средним 0 и дисперсией s2 / n. Таким образом, для определения вероятностей тех или иных отклонений n от а при больших n нет надобности знать во всех деталях распределение величин Xn, достаточно знать лишь их дисперсию.
В 20-х гг. 20 в. было обнаружено, что даже в схеме последовательности одинаково распределенных и независимых случайных величин могут вполне естественным образом возникать предельные распределения, отличные от нормального. Так, например, если X1 время до первого возвращения некоторой случайно меняющейся системы в исходное положение, Х2 - время между первым и вторым возвращениями и т.д., то при очень общих условиях распределение суммы X1 +... + Xn (то есть времени до n-го возвращения) после умножения на n 1/a (а - постоянная, меньшая 1) сходится к некоторому предельному распределению. Таким образом, время до n-го возвращения растет, грубо говоря, как n 1/a, то есть быстрее n (в случае приложимости закона больших чисел оно было бы порядка n).
Механизм возникновения большинства предельных закономерностей может быть до конца понят лишь в связи с теорией случайных процессов.
Случайные процессы. В ряде физических и исследований последних десятилетий возникла потребность, наряду с одномерными и многомерными случайными величинами, рассматривать случайные процессы, то есть процессы, для которых определена вероятность того или иного их течения. Примером случайного процесса может служить координата частицы, совершающей броуновское движение. В В случайный процесс рассматривают обычно как однопараметрическое семейство случайных величин Х (t). В подавляющем числе приложений параметр t является временем, но этим параметром может быть, например, точка пространства, и тогда обычно говорят о случайной функции. В том случае, когда параметр t пробегает целочисленные значения, случайная функция называется случайной последовательностью. Подобно тому, как случайная величина характеризуется законом распределения, случайный процесс может быть охарактеризован совокупностью совместных законов распределения для X (t1), X (t2),..., X (tn) для всевозможных моментов времени t1, t2,..., tn при любом n > 0. В настоящее время наиболее интересные конкретные результаты теории случайных процессов получены в двух специальных направлениях.
Исторически первыми изучались марковские процессы. Случайный процесс Х (t) называется марковским, если для любых двух моментов времени t0 и t1 (t0 < t1) условное распределение вероятностей X (t1) при условии, что заданы все значения Х (t) при t £ t0, зависит только от X (t0) (в силу этого марковские случайные процессы иногда называют процессами без последействия). Марковские процессы являются естественным обобщением детерминированных процессов, рассматриваемых в классической физике. В детерминированных процессах состояние системы в момент времени t0 однозначно определяет ход процесса в будущем; в марковских процессах состояние системы в момент времени t0 однозначно определяет распределение вероятностей хода процесса при t > t0, причем никакие сведения о ходе процесса до момента времени t0 не изменяют это распределение.
Вторым крупным направлением теории случайных процессов является теория стационарных случайных процессов. Стационарность процесса, то есть неизменность во времени его вероятностных закономерностей, налагает сильное ограничение на процесс и позволяет из одного этого допущения извлечь ряд важных следствий (например, возможность так называемого спектрального разложения
где z (l) случайная функция с независимыми приращениями). В то же время схема стационарных процессов с хорошим приближением описывает многие физические явления.
Теория случайных процессов тесно связана с классической проблематикой предельных теорем для сумм случайных величин. Те законы распределения, которые выступают при изучении сумм случайных величин как предельные, в теории случайных процессов являются точными законами распределения соответствующих характеристик. Этот факт позволяет доказывать многие предельные теоремы с помощью соответствующих случайных процессов.
Историческая справка. В возникла в середине 17 в. Первые работы по В, принадлежащие французским ученым Б. Паскалю и П. Ферма и голландскому ученому X. Гюйгенсу, появились в связи с подсчетом различных вероятностей в азартных играх. Крупный успех В связан с именем швейцарского математика Я. Бернулли, установившего закон больших чисел для схемы независимых испытаний с двумя исходами (опубликовано в 1713).
Следующий (второй) период истории В (18 в. и начало 19 в.) связан с именами А. Муавра (Англия), П. Лапласа ( К. Гаусса ( и С. Пуассона ( Это - период, когда В уже находит ряд весьма актуальных применений в естествознании и технике (главным образом в теории ошибок наблюдений, развившейся в связи с потребностями геодезии и астрономии, и в теории стрельбы). К этому периоду относится доказательство первых предельных теорем, носящих теперь названия теорем Лапласа (1812) и Пуассона (1837); А. Лежандром ( 1806) и Гауссом (1808) в это же время был разработан способ наименьших квадратов.
Третий период истории В (2-я половина 19 в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего). В развивалась в России и раньше (в 18 в. ряд трудов по В был написан работавшими в России Л. Эйлером, Н. Бернулли и Д. Бернулли; во второй период развития В следует отметить работы М. В. Остроградского по вопросам В, связанным с математической статистикой, и В. Я. Буняковского по применениям В к страховому делу, статистике и демографии). Со 2-й половины 19 в. исследования по В в России занимают ведущее место в мире. Чебышев и его ученики Ляпунов н Марков поставили и решили ряд общих задач в В, обобщающих теоремы Бернулли и Лапласа. Чебышев чрезвычайно просто доказал (1867) закон больших чисел при весьма общих предположениях. Он же впервые сформулировал (1887) центральную предельную теорему для сумм независимых случайных величин и указал один из методов ее доказательства. Другим методом Ляпунов получил (1901) близкое к окончательному решение этого вопроса. Марков впервые рассмотрел (1907) один случай зависимых испытаний, который впоследствии получил название цепей Маркова.
В Западной Европе во 2-й половине 19 в. получили большое развитие работы по математической статистике (в Бельгии - А. Кетле, в Англии - Ф. Гальтон) и статистической физике (в Австрии - Л. Больцман), которые наряду с основными теоретическими работами Чебышева, Ляпунова и Маркова создали основу для существенного расширения проблематики В в четвертом (современном) периоде ее развития. Этот период истории В характеризуется чрезвычайным расширением круга ее применений, созданием нескольких систем безукоризненно строгого математического обоснования В, новых мощных методов, требующих иногда применения (помимо классического анализа) средств теории множеств, теории функций действительного переменного и функционального анализа. В этот период при очень большом усилении работы по В за рубежом (во - Э. Борель, П. Леви, М. Фреше, в - Р. Мизес, в США - Н. Винер, В. Феллер, Дж. Дуб, в Швеции - Г. Крамер) советская наука продолжает занимать значительное, а в ряде направлений и ведущее положение. В нашей стране новый период развития В открывается деятельностью С. Н. Бернштейна, значительно обобщившего классические предельные теоремы Чебышева, Ляпунова и Маркова и впервые в России широко поставившего работу по применениям В к естествознанию. В Москве А. Я. Хинчин и А. Н. Колмогоров начали с применения к вопросам В методов теории функций действительного переменного. Позднее (в 30-х гг.) они (и Е. Е. Слуцкий) заложили основы теории случайных процессов. В. И. Романовский (Ташкент) и Н. В. Смирнов (Москва) поставили на большую высоту работу по применениям В к математической статистике. Кроме обширной московской группы специалистов по В. т., в настоящее время в СССР разработкой проблем В занимаются в Ленинграде (во главе с Ю. В. Линником) и в Киеве.
Лит.: Основоположники и классики теории вероятностей. Bernoulli J., Ars conjectandi, opus posthumum, Basileae, 1713 (рус. пер., СПБ. 1913); Laplace (. .), éorie analytique des probabilités, 3 éd.. ., 1886 (CEuvres complétes de Laplase, t. 7, livre 1-2); Чебышев П. Л., Поли. собр. соч., т. 2-3, М. - Л., 1947-48; Liapounoff A., Nouvelle forme du théoréme sur la limite de probabilité, СПБ, 1901 ("Зап. АН по физико-математическому отделению, 8 серия", т. 12, №5); Марков А. А., Исследование замечательного случая зависимых испытаний, "Изв. АН, 6 серия", 1907, т 1 М 3.
Популярная и учебная литература. Гнеденко Б. В. и Хинчин А. Я., Элементарное введение в теорию вероятностей, 3 изд., М. - Л., 1952; Гнеденко Б. В., Курс теории вероятностей, 4 изд., М., 1965; Марков А. А., Исчисление вероятностей, 4 изд., М., 1924; Бернштейн С. Н., Теория вероятностей, 4 изд., М. - Л., 1946; Феллер В., Введение в теорию вероятностей и ее приложение (Дискретные распределения), пер. с англ., 2 изд., т. 1-2, М., 1967.
Обзоры и монографии. Гнеденко Б. В. и Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за тридцать лет. 1917-1947. Сб. ст., М. - Л., 1948; Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за сорок лет. 1917-57. Сб. ст., т. 1, М., 1959; Колмогоров А. Н., Основные понятия теории вероятностей, пер. с нем., М.-Л., 1936; его же, Об аналитических методах в теории вероятностей, "Успехи математических наук", 1938, в. 5, с. 5-41; Хинчин А. Я., Асимптотические законы теории вероятностей, пер. с нем., М.-Л., 1936; Гнеденко Б. В. и Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.-Л., 1949; Дуб Дж. Л., Вероятностные процессы, пер. с англ., М., 1956: Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, М., 1967.
Ю. В. Прохоров, Б. А. Севастьянов. |
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 22.01.2025 18:41:03
|
|
|
|
|
|
|
|
|
|