|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
 |
Брианшона теорема | Брианшона теорема (далее Б) теорема геометрии, утверждающая, что во всяком шестиугольнике, описанном около конического сечения — эллипса (в частности, окружности), гиперболы, параболы, — прямые, соединяющие три пары противоположных вершин, проходят через одну точку (см. рис.); названа по имени французского математика Ш. Ж. Брианшона (Ch. J. Brianchon, 1806). Б находится в тесной связи с Паскаля теоремой. Эти две теоремы устанавливают основные проективные свойства конических сечений.
Лит.: Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961, § 144—46.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
 |
 |
 |
|
|
Новости 27.02.2025 22:22:50
|
|
|
 |
|
|
 |
 |
 |
|